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I ABSTRACT

General results systematizing the solution of minimax robust

filtering problems are presented. Their application is investigated in

the areas of matched filtering and of state estimation and control for

linear time-varying stochastic systems. Further minimax filtering situa-

I tions are studied for other problems in signal detection and estimatio.

I"

Ac



I
iii

I
ACKNOWLEDGMENTS

It is a pleasure for me to thank my advisor, Prof. Vincent Poor, for

his continuous encouragement and support throughout this work. I am also

grateful to Profs. D. P. Looze, M. Mintz and J. J. Uhl, Jr., and to

G. Bilardi and K. S. Vastola for helpful discussions and comments, and

to Ms. Cathy Cassells for her splendid typewriting of the sometimes awkward

manuscript. Finally, I want to acknowledge the funding provided by the

I Joint Services Electronics Program (U.S. Army, U.S. Navy, U.S. Air Force)

and the U.S. Army Research Office under Contracts N00014-79-C-0424 and

DAAG-81-K-0062.

II
1j. . .



ivU
TABLE OF CONTENTS

U Contents

1. INTRODUCTION .......... .......................... . . 1

2. GENERAL RESULTS ... .............. ........................ 7

2.2 Robust Filtering Theorem ........ ................. 8

2.3 Uncertainties Separation Theorem ..... ............ . 13

2.4 Soft Minimax Filtering ....... .................. . 17

3. MATCHED FILTERING ......... ....................... .. 19

3.1 Robust Matched Filtering Theorems .... ............. ... 19
3.2 Application to Discrete Time ..... ............... ... 26

3.2.1 Signal Uncertainty ...... ................. ... 27
3.2.2 Noise Uncertainty ...... ................. ... 323.2.3 Uncertainty in Signal and Noise .. .......... ... 35

3.2.4 Signal Selection ....... .................. ... 36

4. LINEAR OBSERVERS AND REGULATORS ...... ................ . 40

4.1 Introduction ........................ 40
4.2 Robust Observer Problem ...... .................. .. 42
4.3 Robust Regulator Problem ...... ................ ... 55
4.4 Continuous-Time Case ....... ................... ... 59
4.5 Application of the Conditions for Least Favorability . 65
4.6 Conclusions ......... ........................ .. 68
Appendices .......... ........................... .... 70

5. OTHER APPLICATIONS ........ ....................... .... 72

5.1 Wiener Filtering ........ ..................... .. 72
5.2 Quadratic Receivers ........ .................... . 76
5.3 Output-Energy Filter ......... ................... 79
5.4 Hypothesis Testing and Estimation of Location ......... ... 82

6. SUMMARY ............ ............................ .. 89

7. REFERENCES .......... ........................... .... 93

1



1. INTRODUCTION

When some of the quantities involved in the mathematical model that

I describes a particular filtering situation are not completely known,

another model incorporating the available partial knowledge must be

I adopted. This partial information can be, for example, in the form of

a prior distribution function if considering the unknown quantity as a

random variable, or in the form of an uncertainty set, any of the members

of which can be the actual quantity. Then the objective could be, in the

first case, to maximize the expected value of the original performance

Imeasure or, in the second case, to maximize the performance of the optimum

operating point over the uncertainty set.

Focusing our attention in the case in which the unknown quantity is

modeled by an uncertainty set, suppose that our aim is to synthesize a

system that is somehow insensitive (robut) to the member of the uncertainty

set that is actually present. One of the possible strategies to achieve

this is to optimize the worst-case performance (minunax). In such case,

for any other system there exists an operating point in the uncertainty set

for which it performs worse than the minimax system. This can be considered

as a game in which the designer tries to guarantee a maximum payoff assuming

that his opponent (nature) will select the worst possible operating point

for whatever system he uses.

Because the less uncertain the mathematical model is the better the

resulting system will be, an alternative that the engineer may consider is

that of an adaptive system; i.e., one consisting of a subsystem that narrows

I down the uncertainty by learning a more accurate model of the unknown system

J from the incoming observations. This is especially necessary when the



2

uncertainties are so large that trivial and robust filtering perform

similarly. Indeed the adaptive and minimax philosophies constitute the

mainstreams of the design of uncertain systems. The mutual advantages

and disadvantages of both approaches have been widely discussed. To name

a few, adaptive systems are supposed to be more complex, to have worse

performance for small sample size problems, and thus inferior dynamical

response, and to be, commonly, ad-hoc solutions; minimax systems are

criticized as being pessimistic (although often this is not the least

advisable engineering approach), as losing performance in some nominal

(and maybe most probable) model, and as being dependent on the specifi-

cation of an often arbitrary uncertainty class. Nevertheless these two

philosophies are by no means mutually exclusive. Since the identification

stage of an adaptive system provides a model with some uncertainty (com-

monly approaching zero asymptotically) it is conjectured that a minimax

processing system could aid in improving the dynamics and region of con-

vergence of the overall adaptive system.

A terminological comment is in order here. Zadeh [33] identifies

adaptivity with robustness, stating that a system is adaptive with respect

to an uncertainty class if it performs acceptably well for all its members.

The term robustness as referred to insensitivity to deviations in the model,

has an established usage in the areas of statistics and control systems,

and has been used with a minimax connotation in signal filtering problems.

The application of the minimax philosophy of game theory to filtering

problems in communication can be traced back to the works of Yovits and

Jackson [351 and Nilsson (36] , dealing with signal estimation and matched

filtering. However, the statistical works of Huber in estimation [30] and
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hypothesis testing 131] can be considered as the starting point of the

area of minimax robustness, successfully applied to a long sequel of

problems in statistical co.mmunication theory (surveyed in (341,[381,(39]).

Basically, minimax filtering has been applied to three classes of linear

* filtering problems:

i) Wiener filtering: [26]-[28],[351,[401,[411,143],[46],[471

5 ii) Matched filtering: [31,[51,[361,[371,[43]-145],148]

iii) Kalman filtering: [101-[141,[191,[491

In this thesis we present in the first part several new general results

(not specific to any particular filtering situation) and in the second 4
- part their application to various problems in linear and non-linear fil-

tering.

J The cases in minimax robust filtering for which there exists an

amenable analytical solution are those for which zaoddae po-Lnt6 exist. A

hfilter H and an operating point P are said to form a saddle point if,

fixing P, any other filter different from H has worse performance, i.e.

H is the optimal filter for P, and if, fixing H, any other operating

j point different from P gives better performance, i.e. H has its worst

performance when P is present. If there exists such a filter H, then it

Iis the sought-after minimax robust filter, because its worst-case perfor-
mance is attained at P and any other filter has worse behavior at P.

Further, suppose that we use optimal filters for every operating point in

j= the uncertainty class, then P is the'element whose filter achieves the

worst optimal performance, and hence will be referred to as the eeost

I avoUeb operating point. Note that the saddle point property is not

necessary for the robust filter to exist; however, if it holds, the robust

1
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filter has the convenient feature of being the optimal filter for one of

the operating points (the least favorable) and of performing better at any

other point. In this case the minimax robust filtering problem is reduced

to the search for a least favorable, since we usually suppose that the

derivation of the optimal filter for a particular operating point is given

by the classical theory. Frequently, there exist analytical expressions

for the optimal performance achievable at every operating point; therefore

the search for the least favorable turns out to be a minimization problem.

At this point, the next step is to ask for conditions under which a saddle

point exists. This is the question addressed by the minimax theorems of

game theory (see e.g. (321); a common assumption in these is the concavity-

convexity of the performance function in the set of filters and in the set

of operating points, respectively. However it is often the case that the

filtering situations that we face do not satisfy this assumption. In the

robust filtering theorem of Chapter 2, sufficient conditions are provided

under which the robust filter is the optimal filter for the least favocable

operating point. Roughly, these conditions are the convexity of the uncer-

tainty set, a continuity-type condition on the performance function, and

the convexi.y of this function in the set of operating points. However this

by itself does not assure the existence of a saddle point since the uncer-

tainty class may not have a least favorable element; in this respect the

robust filtering theorem cannot be considered a minimax theorem since it

leaves open for every particular uncertainty set the existence of least

favorable operating points (actually, the condition of requiring uncertainty

classes with least favorables is relaxed, and more general classes are

allowed). The next general result presented in Chapter 2 deals with the



* 5

frequent situation in which there are several independent uncertainties;

3 under some restrictions on the performance function necessary and suffi-

cient conditions are given for a filter and operating point pair to be a

I saddle point. These conditions, which appear in recursive form (and do

3 not require convexity of the uncertainty classes), are used successfully

in solving particular problems in the following chapters, and turn out to

be very useful in testing candidates for saddle points. Another idea that

is investigated in Chapter 2 is the soft minimax philosophy that can be

employed when the modeling uncertainty is diminished by the presence of a

I nominal, most likely, element.

In Chapter 3, the general robust matched filtering problem is solved

1 using the aforementioned results; in particular the uncertainties separation

theorem results in a set of simpler and more general conditions than those

1previously published. Also, least favorable signals and noise for several

J useful uncertainty classes are obtained in the discrete-time case, and the

optimal design of signals to combat their uncertainty in reception is inves-

jtiqated as well.
The problem of designing linear observers and regulators for stochastic

1systems in both continuous and discrete-time with uncertain second order
Istatistics is addressed in Chapter 4. Once again, in this case the appli-

cation of the general results allows the conjoint resolution of the estima-

tion and control problems. The soft minimax solution of the unknown first-

order statistics case is shown to be equivalent to earlier works in the

tracking-evasion games. Particular uncertainty classes of covariance matrices

I are studied and some technical errors in a treatment of minimax Kalman

filtering which appeared in the literature are pointed out.!
!



6

In Chapter 5, several further applications are considered. Some

general results for Wiener filtering are provided and a critique of the

usually employed penalty function is presented. Next the robust filtering

theorem and the uncertainties separation theorem are applied to two problems

in random-signal detection, namely the quadratic receiver and the output-

energy filter. Finally, a non-filtering application is demonstrated by

providing a minimax result for hypothesis testing and an alternative proof

of the classical minimax robust location estimation theorem.
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1 2. GENERAL RESULTS

U I2.1 Formulation

3 In an unconstrained sense, given some external situation (operating

point), and a processing device (filter), aquantrltative measure of per-

formance is assigned. The classical filtering problem is to find a

filter that maximizes that figure of merit for a particular operating

point. As discussed in the previous chapter, when the operating point

3 is not exactly known, one of the alternatives is to search for a (maximin)

filter with an optimum lower bound of performance. The goal of this chapter

3 is to provide some general tools that can be applied in a wide variety of

these filtering situations with uncertain operating points. Denote by IC

the space of filters and by Q the space of operating points. The payoff

j function M is a real functional

jM(.,.): ICx Q -R

The triple (N,Q,M) defines the type of filtering situation. Suppose H C .X

and Q C Q are the sets of allowable filters and operating points respectively.

According to the standard terminology the triple (H,Q,M) will be referred to

as a game. The following definitions will be used:I *

M (q) - sup M(h,q); (2.1)

h (q) is the optimal filter for q E Q if

M(h (q),q) - M (q); (2.2)

q is a least favorable operating point for (H,Q,M) 
if
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qL " arg min M (q) (2.3)
qE Q

(Note that throughout this thesis we use the notation x0  arg max/min f(x)
x EA

if f(x0) - max/min f(x), without implying neither existence nor uniqueness.)
x EA

(h G H x Q is a regular pair for (H,Q,M) if for every q E Q such

that x a (I-a)qL + aq E Q for all 0 a <,

M (x ) - M1(hLx )

lim M x 0 (2.4)
a +0

(hLPqL) E H x Q is a saddle point solution to the game (R,Q,M) if for every

h E H and q E Q

M(h,qL) L M(hL9qL) L M(hLq) (2.5)

hR is a maximin robust filter for the game (H,Q,M) if

hR = arg max inf M(h,q) (2.6)
R E H q EQ

2.2 Robust filtering theorem

In this section we give some general results pertaining to the solution

of the problem described by (2.6).

Lemma 2.1

Let f: (0,11 IR be a convex function. Then f(0) < f(a) Va E [0,1] if

and only if lim - [f(c)- f(0)] exists, is finite and nonnegative.
+ 0

Proof

This is an extension of the proof given in [1] for an open interval.

..... -. I



I9

First we show that -1 [f(x)- f(0)] is monotone non-decreasing in x E (0,I].x

3 Suppose 0 < x - x', because f(.) is convex

f(x) 4 f(x') -- + f(0)

or equivalently

- if(x) - f(0) 1 -1- [f(x') - fo(0)

Now we can prove the only if part:

Suppose f(0) 4 f(a) Vc E 10,11 , then Va E (0,1] , - [f(a) - f(0)] > 0,

but since this function is monotone non-decreasing lima - f(Q) - f(O)j

exists, is finite and nonnegative.

For the reverse implication, assume that lim 1 [f(a) - f(0)] exists,
+ 0

is finite and nonnegative, then for every x E (0,11, g z 4 x such that

[f(z) - f(0)j > 0, but since this function is monotone non-decreasing in
1

z, ; If(x) - f(0)] > 0, hence f(x) > f(0).

I Lemma 2.2

Suppose Q is a convex set, and for every h 6 H, M(h,) is convex in Q.

j With respect to the game (H,Q,M), a regular pair (hLtqL) is a saddle point

solution if and only if qL is least favorable.I
Proof

jThe left inequality in the definition of saddle point (2.5) is satis-

fied for every regular pair, because particularizing the regularity condition

(2.4) for q - qL' it follows that

M (qL) - M(h LOq) (2.7)

!
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According to Lemma 2.1, the right inequality is satisfied if and only if

M(hL,Xa) - Mh~L

A(q) - lim V0 (2.8)
+0 a

for every q E Q.

Now, note that M (.) is convex in Q since with q0 - (l-ca)qI + aq2 ' for

all 0 < a 1 1, and ql,q2 E Q, we have

sup M(h,qo) < sup {(l-a)M(h,ql ) + aM(h,q 2 )}

h E H h E H

= (1-a) sup M(h,ql) + a sup M(h,q2) (2.9)
h E H h E H

where the inequality follows from the assumed convexity of M in Q for every

h e H.

Again by Lemma 2.1, since M () is convex in Q, qL is a least favorable

operating point if and only if

M (x ) -MN (qL)

B(q) lim a 0 (2.10)
+0

for every q E Q.

Considering that

M (x ) - M(q M (xa) - M(hL,X) + M(hLX) - M(hL qL) (2.11)

and that (qL9hL) is a regular pair, taking lim - [ I of both sides of

2.11, we get that for any q E Q

A(q) - B(q) , (2.12)

and therefore the lemma is proved.
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Theorem 2.1

Suppose that (K,P,M) is a game with the following properties:

i) There exists a convex set Q, P C Q C Q such thatI
inf sup M(h,q) - inf sup M(hq) (2.13)

q E P h E K q E Q h E K

ii) There exists a set H, such that H C K C X and for every q E Q

sup M(h,q) - sup M(h,q)
hEK hEH

iii) M(h,') is convex in Q for all h E H.

Then, if a least favorable for (H,Q,M) q and its optimal filter hL

form a regular pair for (H,Q,M), hL is a maximin robust filter for the game

I (K,P,M).

IProof
According to Lemma 2.2, if a least favorable for (H,Q,M), q' and its

3 optimal filter, hL, form a regular pair, (hL9qL) is a saddle point solution

to the game (H,Q,M). Therefore, we have

I
M(h L9 qL- inf M(hLV q )

~qEP
•inf M(h L' q )

sup inf M(h,q) (2.14)
h EK q r=PI

where the first inequality follows from P C Q and the second from hL E H C K.

I Furthermore,

I
I
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M(hLPq L) sup M(h,qL)

> inf sup M(h,q)
qEQ hEH

inf sup M(h,q) (2.15)
qEP hEK

where the inequality follows from qL e Q and the last equality from assump-

tions i) and ii). But for an arbitrary game we have (e.g. [21)

sup inf M(h,q) < inf sup M(h,q) (2.16)
h E K q E P q E P h E K

Therefore the previous inequalities in (2.14) and (2.15) are transformed into

equalities. In particular,

sup inf M(h,q) - inf M(hLsq) (2.17)
hEK qEP qEP

and therefore h is a maximin robust filter for (K,P,M), as we wanted to show.
L

Remarks

The utility of this result stems from the fact that usually explicit*J
expressions for M (.) are available, and therefore the original maximinimi-

zation problem is reduced to a minimization one, namely the search for least

favorables. This will be illustrated extensively in the next chapters with

the application of the general results to specific filtering situations.

It seems convenient to underline the meaning of the introduction of a

game (H,Q,M) different from the original (K,P,M) in the theorem. The key

point is the existence of a game with saddle point, in order that Lemma 2.2

can be used. On one hand, the introduction of the set Q allows the solution

of problems in which the original uncertainty set either is not convex or
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has no least favorable. Note that in the case in which inf sup M(h,q)

q E Q h E K

is attained, the existence of a rr'ust filter is assured. On the other

hand, the introduction of the set H allows the solution of the robust

filtering problem for general sets of filters (class theorems), while

3 Idealing with easier, restricted sets.
However, the most relevant remark is that important robust filtering

situations (as will be seen in the next chapters) cannot be solved by using

the well-known game-theoretic vl.nimax theorems, because their respective

payoff functions, although convex in the uncertainties, are not concave in

3 Ithe filter sets.
g 2.3 Uncertainties separation theorem

Let (H,Q,M) be a game in which Q is the cartesian product of independent

9 uncertainty classes

-Q = Q1 xQ 2 X .. X Qk

5 and the payoff function can be put as

=M(h,(ql,...,qk)) F(fl(h,ql),...,fk(h,qk)) (2.18)

with F: IRk - IR non-decreasing in each one of its arguments.

Define, if they exist, for i -.l,...,kI*
qi(h) - ar min fi(h,x) (2.19)I x 6 Q1

Theorem 2.2

(L,qL) is a saddle point of (H,Q,M) if and only if hL is solution of

I the equation

1
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hL - arg max M(h,(q (h),...,qk(hL)) (2.20)
hE H

and

qL = (q I(hL),...,qk(hL) )

Proof

Only if. Suppose (h1VqL) is a saddle point of (H,Q,M), then

M(hL - min M(hL9q) - min. M(hLVq) (2.21)
qEQ q Q

for all Q C Q, such that qL r Q. In particular for Qi = (qLl x {q L2

x Q " x {q Lk} with qL = (qLl'"' qLk). This leads to

M(h ~q)  min M(hL,(q l..x~q ~)...,qk) (2.22)

Equivalently

F(fl(h q .),...,fi(hL q ),...Ifk (hL q k )

min F(f1 (hL q Ll),...,f i(h ,x) ,.... fk(hLPqLk) (2.23)
xE Qi

and since F is non-decreasing in the i-th argument

qLi m argmin f i(h ,x) -qi(h L) (2.24)
x eQ i

Moreover, if (hL'qL) is a saddle point,

hL = argmax M(h,qL) (2.25)
hEH

Then, the last two equations result in (2.20).



1 15

If. From the definition of qi(hL) and using the monotonicity of F in

3 every argument we have that

M(hLOq) M(hL,(ql(hL),...,qk(h0)

- min M(h,q) (2.26)
3 q6 Q

Furthermore, (2.20) is the remaining condition in order for (hLPqL) to be

a saddle point of (H,Q,M).

Corollary

3 Suppose the game (KP,M) satisfies the conditions stated in Theorem

2.1, and hL is solution to the equation (2.20), then hL is a maximin robust

1 filter for the game (K,PM).

Proof

Letting qL w (ql(hL),... ,qk(hL)), (hL qL) is a saddle point of (H,Q,M).

Then the same proof of Theorem 2.1 can be used.

Remarks

Although Theorem 2.2 is quite apparent (for k - 1 it is nothing else

than the definition of saddle point), it represents a powerful tool in order

to derive conditions for least favorability, and in order to check candi-

dates for saddle points.

* This result is especially attractive for an iterative numerical solution

* of the robust filtering problem, i.e., for a given filter the solution of

the set of equations (2.19) can be computed and incorporated into equation

(2.20) which in turn can be solved for a new filter. Furthermore, if the

uncertainty subclasses are such that there exists an analytical solution (in1I
I1
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terms of a generic h) for qi(h), i - 1,..., k, then every uncertainty can be

solved separately (as if all the others were constant), getting finally the

robust filter from the (also, frequently analytic) solution of (2.20).

One particular case in which there exists an explicit solution for

the least favorable and that can be found repeatedly in the next chapters

is given by the following result.

Lemma 2.3

Suppose that the uncertainty subclass Qi is a subset of a Hilbert space S

and is some neighborhood around a nominal element described by

Qi M (x E S, J x-x 0 1146} (2.27)

where the norm is that of the Hilbert space S. Suppose that fi(hL,'.): S - IR

is a continuous linear functional, then

* z(hL)
qi(h) = x0 - A lZ(hL) (2.28)

where z(hL) is such that for all x E S

fi(hL,x) - (x,z(hL)Y (2.29)

Proof

Since fi(hL,) is a continuous linear functional the existence of an

element z(hL) E S fulfilling (2.29) is assured by the Riesz representation

theorem (e.g. [8]). Note that for all x E Qi the Schwarz inequality results

in

I(x-xo,z(hL))I • IIx-xoil IIz(hL) II 1 4 Iz(hL) i1 (2.30)
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I
Also,

(x-(-A z(hL) )z(h + A lz(h if> 0 (2.31)30 1 z (h L) 1 L) LLL

where the inequality follows from (2.30). Therefore we have for all x E Qi

1 z (hL) (.2

fi(hL,X) > fi(hL, x0 -A 11 z(h) (2.32)

and (2.28) follows.

£ 2.4 Soft minimax filtering

1 Sometimes there exists a nominal operating point q0 9 such that our

uncertainty on the actual operating point is lessened by the fact that points

closer, in some sense, to the nominal are more likely to occur than those

more distant from it. This can be incorporated into our model, modifying the

payoff function in such a way that points in the uncertainty class are penalized

I according to some distance from the nominal (D(q,qo)). Hence for soft minimax,

we have the payoff functionI
Ms(h,q) - M(h,q) + D(q,qo) (2.33)I

Note that now, the elements closer to qo are stronger candidates to be the

worst case. All the results derived before can be applied to the game with

payoff function Ms . Directly from the definition of regularity we can see

that (hLqL) is a regular pair for (H,Q,M) if and only if it is for (H,Q,Ms).

Besides it is not unusual that the distance function is convex in the uncer-

tainties; if so, condition iii) in Theorem 2.1 is also equivalent for bothI
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types of minimax filtering. However the existence of a least favorable for

(H,Q,M) does not guarantee its existence for (H,Q,M s), even when D is convex.

An example is sufficient in order to verify this.

Consider the convex set

Q M {(xlx 2 : 0 < x1, x 2 < 1U {(0,1)}UJ{ (1,0)} C I

and the convex functions f(x) - x1,gx 2  Obviously

mini f(x) -f((O,l))
XG Q

mini g(x) -g((1,0))
x EQ

But there exists no z E Q such that

f(z) + g(z) -0 in mE f(x) + g(x)}
XEQ
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I

3.1 Robust Matched Filtering Theorems

3 The linear system that maximizes the output signal-to-noise ratio at

some instant of time, when the input is a deterministic signal embedded in

I additive random noise is known as the matched filter for this pair of signal

and noise. If the noise is a Gaussian process, then the output of this

filter in the instant in which the signal-to-noise ratio is maximized pro-

1 vides a sufficient statistic for any likelihood ratio detection test of the

input signal. Since the power of the noise at the output of the linear

filter depends on the second-order statistics of the input noise, a complete

specification of the signal and autocorrelation of the noise is necessary

and sufficient in order to derive the corresponding matched filter. Due to

modeling uncertainties or changing operating environments it is possible

that the second order characterization of the noise is not completely known.

IAlso, channel nonlinearities tend to distort the signal in an unpredictable
(or difficult to ascertain) way. In these cases it is interesting to design

a robust matched filter, i.e. a filter that gives the optimum - in some

sense - behavior within the uncertainty region. Poor [3] showed that under

some mild restrictions the design of the robust matched filter in the maximin

I sense - the most widely used in robust decision problems - is equivalent to

finding the least favorable possible pair of signal and noise. In this chap-

ter we derive the central results of robust matched filtering by using the

j theorems proved in Chapter 2, and present some analytical solutions for

particular uncertainty classes in the increasingly important case of discrete

I time processing [41.

!
$1
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A general formulation of the matched filter design problem that allows

the description of the input pair of signal and noise in various ways has

been given in [3]. Let a signal quantity (in the time or frequency domain)

be s E X, a noise quantity (e.g., covariance matrix or autocorrelation

function) be n E K, and a filter quantity (e.g. impulse response or trans-

fer function) be h C 3, where 3 is a Hilbert space with inner product

(-,.)and R is a space of bounded, linear, (self-adjoint) positive operators

mapping 3 to itself. The real valued functional defined by

p(h;s,n) = I(h,s)1 2 /(h,nh) (3.1)

represents the output signal-to-noise ratio of the filter at some time

instant, for the usual descriptions of signal and noise, either in continuous-

or discrete time. Note that in order for this definition to make sense, the

quantity n should represent a second order characterization of the noise.

Therefore, the filtering situation defining triple is (,KK x,p). By direct

application of the Schwarz inequality the optimal (matched) filter for (s,n)

is such that n-h (s,n) = s. Parallel to the notation in (2.1), we write

p (s,n) - su p(h;s,n) - (s, h (s,n)) (3.2)
hEK

Now suppose that the signal and noise pair (s,n) belongs tc an uncertainty

class P. (A particular case is when the uncertainties in signal and noise

are independent in which case P = S x N). Thus we have the game (K,P,p).

A pair of signal and noise (sL n L) E P is said to be least favorable for

matched filtering if

(s ,nL) arg min P (s,n) (3.3)
(s,n) E P
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12
Furthermore, we will assume, in order to simplify the derivations that for!*
every (s,n) E P the optimal filter h (s,n) E K exists. (Note that if n is

*

positive, it is not necessarily invertible; however, if h (sn) exists it

is uniquely defined.) The central result in maximin robust matched filtering

is the following.

Theorem 3.1

Suppose that

1. The uncertainty set P is convex.

2. h (s,n) is defined for all (s,n) E P.I *
3. (s,h (sL9 (1-a)nL+an)) is right continuous at a 0 for all

(s,n) E P.

Then, if (sL,nL) is a least favorable pair, its optimal filter is a robust

matched filter for (K,P,p).

j Proof

According to Theorem 2.1, since p(h;s,n) is convex in P for every

jh E X [3] (note, incidentally, that for every (s,n) E P, the SNR is not

concave in 30, all we have to prove is that (hL,(SL,nL)) is a regular pair,

1 where nh = s.
L L L*

Let (o,v) - (l-a)(sL,nL) + a(s,n), with (s,n) E P. (By the assumed
I *

convexity of P, (a,v) e P.) Noting that the operator h (',v) is linear we

[ get the following equation for later use

j ( -)[(sL,h (sL,V)) - SLOh L

- (SL,h (sL-vhL,V)) - a(sL, h (sL,v) - hL)|* ,
M 01[(SL, h (SL-nhL,v) - h (sL,v) + hL) 1

*
- [t(sL,hL) - (SL,h (nhL,v )] (3.4)

I
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Now we compute

p * (o,,v) - P(hL;a,,) (hL,vhL) (o,h* (o,av))(hL, vhL)- I(a,hL)l2  (3.5)

The numerator can be expanded in the expression

1 (1- h*(s LV)) + a2 <s,h (s,v)) +

a(l-a)((s,h (sL,V)> +(sL,h (s,v)))I [(hL,vhL) I -

1 (1- ) 2(sLhL))2 + a2 (s,hL )12 + 2a(l-a)(s Lh L )Re(s,h )

2 *
U(-) (sL,hL)[(sLO h (SLV)) - (SLthL )] +

2a (sL,hL)[Re(s,h (SL,v)) - Re (s,hL )) +

a ( sLh (sL,v)) ((hL, nhL) - (hL,nLhL)) + O(W) (3.6)

Where we have used that h (.,v) is self-adjoint. The first term of the right

hand of (3.6) is given by (3.4); therefore, the numerator of (3.5) is

(1-a)a [(sL,hL) - (sL,h (nhL,V))] (sL,hL ) +

2a (s L,hL ) [Re ( s,h (sL,v)) - Re (s ,hL )] +

a SL,h (S,)) ((hL,nhL) - (SL,hL)) + o (c)

a a [(s ,h ) (s ,h -h (Ssv)) +( ,h (SLv)) (h ,nhL -LL9 L9 L L L

L'[( L h (37)L -h ( #V (sL sL" ) hL9n

(s Lh L) (h (sL,v),nhL)I + o(a) (3.7)

Using assumption 3, the term in brackets goes to zero when a 0 0, therefore

(3.5) is o(a) and consequently (sL,nL) is a regular pair since (s,n) is

arbitrary.
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Remarks

3For the sake of clarity the theorem is not stated in its most general
form. It is enough that the uncertainty class P has property i) of Theorem

2.1. With respect to the continuity condition required by the theorem, we

3 have the following

3Lemma 3.1
If nL is invertible then

lim h (sL,) -h (sL,nL)

for all n E K such that (sLfn) E P, where v - (l-a)n L + an.I
Proof

I iivxi Mi((1- a)nL + an)x i ) (1-oOllnL x1 - acinxil

S(1-a) 11 ni ll - all nillixil (3.8.1)

where the last inequality follows because n is bounded. If nL is invertible

I(one to one and onto) then (Theorem 21.3 [21)) there exists c > 0 such that

jfor every vector x
i I nLxl X ' 11> If Xl

Now fix t such that 0 < t < e/(c + llnl ). Then according to (3.8.1) for

every a E tO,t] and every x,

I ll'xll > 8llxll (3.8.2)

I

I
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Since v is self-adjoint positive

- Null (M)I Range (v)

therefore, the range of v is dense. This fact and (3.8.2) imply that v is
-l

invertible (Theorem 21.3 [21]). If we let x - v y in (3.82) for every

vector y we have

II I vy I - 1 -ly V1 ii

and therefore for every a E [O,t]

Il- sup -1 (3.8.3)
y I y II

The existence of v-  (for a E [O,t]) implies that the following is true

h (sL,v) -h (sL,nL) V 1 (Lv)h (sLnL)

Taking norms

• * -*
lh (sL,v) - h (sL,nL)U i viII 1nL - vu 11h (sL,nL)I

I Ia' -kOnL- nl 0h (sL3nL)II (3.8.4)

and the lemma is proved.

Note that,by the Banach inverse theorem [91, since v is linear and

continuous its inverse (it is exists) is bounded. However this would not
-i

be enough for the -revious proof, since it requires that v is uniformly

bounded in a neighborhood of a - 0.

The conclusion is that the invertibility of nL is sufficient for

condition 3 to be true (via Lemma 3.1 and Schwarz inequality).
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Now we are going to direct our attention to the important special case

Iin which the uncertainties in signal and noise are independent of each other
and therefore P S xN.

Theorem 3.2

(hL,(sL,nL)) is a saddle point of (K,S x N,p) if and only if

I ~nLhL - L

2. l(shL )I > 1(sL9hL)I Vs E S (3.9)

3 3. (hL,(nL-n)ht> 0 Vn 6 N (3.10)

I Proof

The payoff function for matched filtering (SNR), (3.1), can be

I expressed as

I p(h;s,n) - F(l(s,h) 1 ,((h,nh)) - ) (3.11)

with F: R2 - 1, F(xy) - x2y. Consequently the uncertainties separation

theorem can be applied and equations (2.20) and (2.19) result in conditions

1, and 2-3 straightforwardly.

j Remark

In [3] a similar result (for convex classes) was derived with conditions

1 2 and 3 replaced by

I2 Re {(s,hL)} SL,hL) (hL,nhL) 0 0.12)

I for every (s,n) E S xN. In 15] it was shown that this is equivalent to

I condition 3 and

Re ((s,hL)} (sL hL) Vs r S (3.13)

iii
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It is interesting to note that if S is convex (Theorem 3.2 does not

put any restriction on S and N) (3.9) and (3.13) are equivalent. First,

it is obvious that (3.13) implies (3.9). Now suppose there exists sI E S

such that Re{(Sl1hL)} <(SL,hL) and consider oa - (l-a)SL + asl"

1 aah L 12 [(- _)( sL9h L ) + a Re (sighL]2 +

(a Im (sl,hL) ]
2

((SL,hL) + 2 ( Sl hL) - (SLhL)) 2 +

2a (sL,hL) (Re (sl,hL) - (sL,hL)) +

a 2(Im ( (3.14)

Denoting A (sLh Re (sighL) > 0, for every a such that

0 < a 42L2 (sL9hL)/(02 + (Ia (sl,hL)) 2  (3.15)

we have that I<a ,hL)1 2 < I(sL,hL)1 2. Therefore, since S is convex, a E S

and (3.9) does not hold.

3.2 Application to Discrete Time

One of the most important instances in which this problem appears is

in Direct Sequence Spread Spectrum systems. In this case, the optimum

linear processor is an analog filter matched to the entire codeword wave-

form. However, because of technological or versatility considerations it

is often preferred to use a discrete-time matched filter whose input can

proceed from a direct sampling of the received codeword or from the sampling

of the output of an analog filter matched to the chip waveform.

In the above formulation, let X( - Ik, s = [s0...',Sk-l, h

[ho,...,hkl T , where hi = hk-il, and si, hi are the values of signal and
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filter impulse response respectively at the i-th sample. The inner product

is defined as the usual scalar product: (a,b) a Tb; and the noise des-

criptor is n E i? C ,kxk, a positive-definite symmetric matrix, representing

the covariance matrix of the zero-mean input noise. It is easy to see that

with these definitions, (3.1) gives the power of the filter output due to

the signal, divided by the variance of the filter output due to the noise,

3 at the k-l-th sarple.

Note that in this (finite dimensional) case the noise operator (assumed| *
to be a positive definite matrix) is always invertible (thus h (s,n) exists

for every pair) and through Lemma 3.1 the continuity condition of Theorem

1 3.1 is always satisfied.

3 In the sequel, we will deal with simple and general uncertainty classes

in order to illustrate the search for least favorable pairs.

3.2.1 Signal Uncertainty

We consider here two classes of uncertainties described by a bound on

the 2 and e. norm of the deviation from a given nominal s

[L2 uncertainty]. Let n0 be the covariance matrix of the input noise, and

I S1 the class of allowable signals defined by:

IS I {s E Ik, Is-s 0 11&} (3.16)

j The least favorable signal sL depends on n0 and is given by the following:

j Proposition I

s L  argmin (S,nols) s 0 hL  (3.17)

sESIh1

1
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with

2 11h L 1 - 6 (3.18)

-1
and h - n s

L 0OL

Proof

Since the covariance matrix of the noise is known and is positive

definite, according to Theorem 3.2, sL is least favorable if and only if

(sL,hL) min (s,hL) ; (3.19)

seS

but by (3.17) and (3.18) we have for s E S1

(s-sL,h (s-sh L> + A1h LI , (3.20)

where the right side is nonnegative by the Schwarz inequality:

1(S- SohL) I <1h L 11 Ils-s 0 11 r 6llhL II . (3.21)

Since sL G S19 sL is the least favorable signal.

We can get an alternative expression for the robust filter, with (3.17)

and (3.18):

hL = (no + a2I)- s0 (3.22)

Equation (3.22) shows that the robust filter is the filter matched to the

nominal signal and the input noise with an added component of white noise
2

of variance a2. Note that in general, a is computed recursively from (3.18)

and (3.22). Further simplification of the result can be obtained in parti-

cular cases such as the following:
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Proposition 2

3 The - nominal - filter matched to (s0,n0 ) is robust for deviations

from so defined by the class S1 (3.16) if and only if s is an eigenvector

of n0.

I Proof

I First note from (3.1) that the performance of filter h is not affected

by scaling the impulse response by a constant, so the nominal filter is

3 robust if and only if there exists k E O' such that

(n0 + o2 1) -1s kn01 s0  (3.23)

3 but this is equivalent to

[( -k)/o 2 Iso  no 1s (3.24)

and since no is invertible, (3.24) holds if and only if s is an eigenvector

I of nO.

j [&_ uncertainty). Let S2 ' the class of allowable signals, be defined by

S 2 , ( s e ]k, maxIsi-siOI A, i O,...,k-l} (3.25)

In order to get the least favorable signal in this class, according to (3.3)

we have to find out The solution to the minimization problem:

k-l k-l I
argmin Z I (n0 1)i sis (3.26)
0s r J 0 ... x Jk-l i0 J-O

with Ji M [s0i'A, s01+A] . In some special cases an analytic result is

achievable:
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Proposition 3

If the samples of the noise are uncorrelated the least-favorable

signal sL in S2 is given by:

0 - S 0 <

S Li m s0 -A < s 0i (3.27)

Is 0i A s0 < -

Proof

If the noise samples are uncorrelated we have:

no  - diag(l. ..,- -')

with Z. > 0. For all i= 0,...,k-l, it is easy to see that:1

s i SLi > (S Li) 2 (3.28)

for any s E S Since hLi s ,iSLi
, this implies:

(sL,hL) min (s,hL (3.29)s E $ 2

Therefore, by Theorem 3.2, sL is the least favorable signal.

Proposition 4

If there exists an element sL E 2 such that

s0C if hLi >0 (3.30)
Si s01 +6 if hLi <(0

with h n-1 sL then sL is the least favorable signal.
L O5L9 L



31-

Proof

I The expressions (3.25) and (3.30) imply that for any s 6 S2 and

Ii
hLisi hLisLi (3.31)

Since this is sufficient in order to have (3.29), s L is the least favorable

signal in S 2 .

Note that this proposition suffers from the common inconvenience of

the results derived from the uncertainties separation theorem, namely sL

i depends on hL9 and therefore the solution must be reached recursively except

for special cases. However, we can assure the existence of a solution of

3 the type of (3.30) and its direct computation under the condition of the

following:

Proposition 5

If the maximum deviation from the nominal signal in each sample is

i bounded by:

A < minlh Oil/max Ml(n 01 )Jm (3.32)
i j m 0

the least favorable signal sL in S2 is given by

Soi - a if hoi > 0

s Li S l + A if h0 < 0(

where h0 - n0 s is the nominal matched filter.

I Proof

With h L n 0 sL and uL = s L - s O for i-0,...,k-1
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IhLi-hoil " I(n0l') i1 (3.34)

since sL E $2, the absolute value of the components of uL is bounded by A.

Thus

1(n) i max 2: 1 (n01 )j. l  (3.35)
J m

and by (3.32)

lhLi-hoiI < 1hOil (3.36)

which is sufficient in order that

sgn(hLi) - sgn(h01) (3.37)

Therefore, by Proposition 4, sL given by (3.33) is the least favorable signal

in S2.

3.2.2 Noise Uncertainty

Here we suppose that the nominal signal so is truly present at the

input, but the actual covariance matrix n is allowed to differ from the

nominal no. The first is a general result useful for different classes of

uncertainties.

Lemma 3.2

nL is the least favorable noise for every nominal signal s. E mk if

and only if nL is a maximal element of N (the uncertainty class).

Proof

Since there is no uncertainty in the signal we only need to prove

It is supposed that N does not depend on so.
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conditions 1 and 3 of Theorem 3.2.

By definition, nL is a maximal element of N, if and only if

IL > n (3.38)

for all n E N. But this is equivalent to (3.10) holding for all so E ]k

since for every hL 6 Rk there exists so - nLhL .

As an application of this previous Lemma, we have a result on the

least favorability of white noise:

Proposition 6

P Suppose nL - cIE N, this is the least favorable covariance in N if and

only if mlnu 2  1 c for all n E N.

Proof

P According to Lemma 3.2, cI is the least favorable covariance in N if

and only if it is the maximal element of the class, i.e. for all n 6 N,

x E R k, x # 0:

x T(n 0 -n)x -lXII 2 -x nx > 0 (3.39)

S(x Tnx)/lxl 2 4 c (3.40)

Equivalently, by Rayleigh's principle [6),

j P(n) < c (3.41)

I where p(n) denotes the spectral radius of n (maximum absolute value of its

eigenvalues), but nuI2 = p(n).

2
*lini2 =Operator norm of n.
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Next, in analogy with the Z2 signal uncertainty, we deal with a

specific deviation class defined by

N1 {n E IRkxk, Iln-n0 I c, n > 0} (3.42)

where e is a positive constant, n0 is the nominal noise covariance matrix

and the norm is any valid matrix norm.

Proposition 7

The least favorable noise in NI is

nL = no + el (3.43)

Proof

By means of Lemma 3.2, this is equivalent to proof that nL is a maximal

element of N For any n E N and x E IRk:

xT(nL-n)x - xT(n 0 +I -n)x - eIlxli2 + xT(n0-n)x ; (3.44)

but by the Schwarz inequality

IxT (n 0 - n)x1 < IlxI1 11 (n o0 - O~x 11 (3.45)

4 lxIi2 n0 -nil , (3.46)

where the last inequality must hold f r any type of matrix norm [7] . Combining

(3.44) and (3.46) we get

x T(nL-n)x > Nixti2i ( -11n 0 -nl1) ; 0 (3.47)

k'
Finally, it is easy to see that nL E N since for any x E R, x # 0:

x nL a x n0x + ixll 2 > 0 (3.48)
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Note that the expression (h,nh) can be put as the inner product of

T
matrices [n,hh defined by

5 [a,b] " tr {a • b } (3.49)

Then other uncertainty classes can be solved analytically via this inner

product. The reader is referred to Section 4.5.

3.2.3 Uncertainty in Signal and Noise

5 IIn this section we suppose that we receive some signal s E S and some

noise with covariance n E N. We must seek for a least favorable pair (sL,nL)

I that fulfills conditions 2 and 3 of Theorem 3.2. If S and N are such that

analytical solutions for the least favorable signal and noise are available,

we get a set of two equations in two unknowns: sL and nL, whose solution

5 exists if and only if there exists a least favorable pair in (S,N).

Further simplification is obtained when one or both of the equations

I gives sL and/or nL directly, i.e. sL (nL ) does not depend on the input noise

(signal). As an example consider the case in which S = S1 (3.16) and N = N

(3.42). Recall that the least favorable signal and noise were given

respectively by:

SL so  2-2 hL

,L no + L

Therefore the robust matched filter N. - 'L1 L is

hL " (n0 + (C + a2)) -ls 0  (3.50)

with o2I1hL 11 A. Note that if the nominal noise is white, the nominal matched

I filter (h0  ) is robust for uncertainties in signal and noise defined by

S1 and N1 respectively.
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3.2.4 Signal Selection

In this section we address the point of optimum signal design for

matched filtering in the presence of uncertainties. We will assume (as

is generally the case in signal selection) that the power of the signal

to be selected is constrained. When the incoming signal and noise axe

known and are processed by their matched filter, it is well known that

the signal that maximizes the SNR is the minimum-eigenvalue eigenvector

of the noise covariance matrix. However, as we will see, when the

received signal is deviated from the one sent this is, in general, no

longer true.

In essence, the problem of signal selection under uncertainties is

s- arg max max inf p(h;s,n) (3.51)
SoIIsoII-c h e C (s,n)ES(s0)xN

where in order to simplify matters we have assumed that the noise and

signal uncertainty classes are independent, and that the signal uncertainty

class is the deviation from a given nominal (like the models treated in

3.2.2). It is clear that if the signal is known, it has to be designed to

give optimal SNR with the least favorable noise, i.e. it must be its minimum-

eigenvalue eigenvector. If the noise is known, we investigate the signal

selection problem for the same uncertainty classes that we did in 3.2.2.

In any case (3.51) results in

s = arg max min (s,n-1 s)m S0 ,11s 0 11c srS(s0 )

- arg max (hL(s 0 ),nhL(sO)) . (3.52)
SoIIs 0 11-c
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i) -Z uncertainty. Recalling (3.22), we have

(hL(s 0 ),nhL(s 0 )) - s0(n+o 2 1) -ln (n+a 21)-1s (3.53)

It is easy to prove that x is eigenvector of n with eigenvalue A, if and

only if x is eigenvector of (n+o 21) -n (n+0o2 1) with eigenvalue

X/(X +a2) 2 . Then, one tends to think that the optimum so is the minimum-

g eigenvalue eigenvector of (n+a 2I) -n (n +a2 I) (and therefore an eigen-

vector of n); however, this is not necessarily the case, because a depends

on so. Let {l,...,4k } be a family of orthonormal eigenvectors of n.
k3Then with s0  'e

i=l

T 2-1 2-1s0 (n+) n (n+ /I) s 0 Z Xia /(Xi+a (3.54)
i-l

h(s )II a 2 /(' a/i+a ) 2(.5
L 0 iul (3.55

So (3.52) results in the following nonlinear optimization problem:

k 2 22
arg max i ia / (X i+a )(3.56)

{ai} ili

subject to

4k 2 2, 22o Z a21/(Qk 1+0 (3.57)
i 1

k 2 2
a, = c (3.58)

Jul

ii) Z, uncertainty. When the noise is uncorrelated we obtained the

explicit solution for the least favorable signal in (3.27). Applying this

expression to (3.52) we get

I III
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sm = arg max SM(s0 )
s0,il 0 1-c

SM(s 0) -( L(s 0 ) , n-1sL(s0

= Z 1 2~ I.
z0 1 ~ ( s 0 1 - A ) 2 + z I( +A) 2  (3.59)

S i>ais i <-Aii s i

where {Xi } is the set of eigenvalues of n.

Proposition 8

The optimal nominal signal for robust matched filtering when the

noise has a known diagonal covariance matrix and the uncertainty on the

received signal is modeled by an YZ class, is a minimum-eigenvalue eigen-

vector of the noise covariance.

Proof

We suppose implicitly that the signal uncertainty is small compared

with its power (specifically kA2 < c2). First we show that if s0 is such

that, for some i,0 < IsoiI < A, there exists s such that Is 0  I1s0 11 c

and SM(s0) > SM(s0). Let

s = s j j im (3.60)

V2+ 2 jinM5oi +Om

with s0m - max {Is~ij}

_1 j (V 2 2 22 2
SM(s0SM(s ! A (,oiilm - _ -A) > 0 (3.61)

m
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Also, if s0 is such that s o > A with Xi > i U min DX.}, there exists
S, * * *

s such that uIs I - uls 0i " c and SM(s O) > SM(So). Let s be defined by

(3.60) replacing m by p.

SM(s o) . [ (Is* I _N)) 2 (ISop_ (iSoil -A)2

10 SM os )

> (lSopl + 1Soi1 - S*p l ) - A 2 (3.62)

p

Now consider

(ISopI +s 011  
2 - isOpl I 21s0i'Sopl- 0(Isopi +Isol) +4

- (c+6)A + 2c6 > 0 , (3.63)

where c - -A, 6 - Isop -A are positive by supposition (otherwise
• A

I (3.61) shows already that so is not optimal). Since is I + Isoi) >

(3.63) implies that the right side of (3.62) is positive, and thus we get

the desired result. Therefore, we have shown that the only so for which

there does not exist a different signal with better SM is the one having allI
the samples corresponding to eigenvalues greater than the minimum, equal

I to zero.

I
I

I
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4. LINEAR OBSERVERS AND REGULATORS

4.1 Introduction

Undoubtedly, modern control is one of the areas in which the minimax

approach to problems with uncertain models has flourished more markedly.

Specifically, the great practical impact of Kalman filtering has resulted

in a sizable portion of technical literature related to the design of optimal

observers for systems whose noise statistics are not accurately known. How-

ever, up to now, the problem has not been treated with full generality; the

available results are related either to the steady-state case or to parti-

cular classes of uncertainties. Moreover, the main relevance of this appli-

cation of our general results for minimax robust filtering, stems from the

fact that the payoff functions that we encounter in these filtering situations

are not concave-convex and thus the use of the conventional theorems of game

theory is not possible (we will show that the often quoted treatment of

D'Appolito and Hutchinson [19] that relies on those results, is incorrect).

As in the other cases, two kinds of results will be presented, first a

minimax theorem, that gives a saddle point solution to the corresponding

game by showing that the minimax equality holds, and thus the solution is

the optimal filter for the least favorable operating point, and second a

procedure to find these least favorable situations for general uncertainty

classes. In order not to be overly repetitive, our emphasis will be in the

discrete-time case, presenting the main results in continuous-time as well.

We will analyze the following filtering situations:

i) the linear observer problem for predictor state estimation

(xk/k-)
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ii) the linear observer problem for filter state estimation (xk/k)

iii) the regulator problem for linear quadratic optimal control.

Finally, several discrete-time examples will illustrate the search for

I least favorables for general uncertainty classes of covariance matrices

* Iof practical interest.

For convenience, we repeat in the form of lemmas the results from

Chapter 2 that will be used in this chapter.

5 Lemma 1

Suppose that S(h,) is concave in Q for every h4E X*

If a least favorable operating point -- for (Q,X ,8) -- IL' and its

optimum filter \, form a regular pair, then hL is a robust filter for
~(p,X,6).

ILemma 2
Suppose that Q is a cartesian product of sets, Q - Q1 X ... X Qk and

that the penalty function can be put asI
-F(fl(h,ql),...,fk(h,qk)),

with F nondecreasing in each one of its arguments. Denote, for i 1 1,...,k

qi(h) - arg max fi(hq)j]
I If h is a solution of the equation

h L - arg min * (h,(q1(hL),...,qk(hL)) (2.20)

hteIthen hL is a robust filter for (P,J,8).

1
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Lemma 3

Under the suppositions of Lemmas land 2, qL (ql I(hL)'."'qk(hL) is a

least favorable operating point -- for (Q,3C ,S) -- if and only if hL is a

solution to (2.20).

4.2 Robust observer problem

Consider the following linear discrete-time system

uk+l - + BOk + '4k + k ko k N-1 (4.1)

Zk Ck +v + k k N-I (4.2)
zk =kXk + vk + , ko

with x an nX 1 state vector, uk an mX 1 control vector and zk an rX 1

output vector. The initial state (xk ) is a random vector with mean m°
0

and variance Z0, and (wk + wk), (vk + Vk) are random sequences independent

of the initial state, representing the process and observation noises with

means wk and vk and covariance

coy {"k], [ -k Jk~ (4.3)

We suppose that the means and the covariance matrices are known only to

belong to some uncertainty classes, col(mo, ,... , ,...,VN)

0 0, G I, k,4 k,e ,Zo)N - A S C, such that and Z are positive
k'ko k-k k 0

0

semidefinite, 9k is positive definite and 41 is congruent with Z- and 9
k k k kc

In the presence of these uncertainties the optimal observer and regulator

problems will be solved in a minimax sense, i.e., our goal is to find

hR a arg min sup 5(h,(y,A)) (4.4)
h E X (yA)E MXC
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where X is some class of allowable filters and 6(.,.) is a penalty function.

In order to solve this game (M xC,X,6) we will apply the general results

of Chapter 2.

1. Formulation

I The optimal linear observer of the state of (4.1) is the solution to

arg n E[e/ k k/q Uq Zq (4.5)

I where X is the set of linear filters of appropriate dimensionality with state
..e z ,...,Zq} and ks

I 'k/q' e/q x k - ZK/q, Uq - {u } Zqu zk 0 Zq a k is a

positive semidefinite weighting matrix. When the second order statistics

I of the stochastic system (4.1-3) are known, the solution for every time k is

given by the Kalman filter; the cases of most general interest, i.e.,

q - k-1, (one-step) predictor estimate, and q-k, filter estimate, are

given by (e.g. [15]) recursive formulas of the form

I k+l/k A ^Xk/k- 1 + Bk uk + wLk + Kk(zk- vLkC 'kY/k-1) (4.6)

I /k a 'k/k-l 4. .k(_ vLk - Ck 'k/k-1) (4.7)

/ko-l m Lo . (4.8)l0
Subtracting (4.6) from (4.1) and xk from both sides of (4.1) we get the

error dynamical equations for arbitrary Kk, Ek, mL.' WLk' Lk:

e k+l/k " (Ak- KkCk) k/k-l Kkvk + wk + k ;- kKk(vk;Lk) (4.9)

e k/k (1 ck) e k-l -Ivk- Ek(;k- vLk) (4.10)

ek0 /ko_1 ,k 0 -MoO (4.11)

1
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Denoting the error variances by Za  var [e , the vector of meansk/q k/q

in the estimator by yL (defined analogously to y), and the state-transition

of the fundamental matrix (A-KC) by 4(.,.) and taking into account that

the white sequences Wk, vk are independent of ek/k-l, (4.9-11) lead to

E e eT a T TT(.2
E [k/k- k/k-' /k-1  + Dk(IK)(Y-Y L)(yYL)T(IK)TT (4.12)

k-ik/k-i -(k,k ) T(k,ko) + Z 0(k,j+l) M T (k,j+i) , (4.13)

xk . I -K(4.14)
k'k

-k -=[(k,ko) b . (k,k) : OnX (N-i-k)n] , (4.15) -

On X (N-l-ko) r

,hi-% 1 (4.16)
(N-k. n" .............0 .. ..........................

(-)-2

T !a (yyL) T (4.17)
ek/k ekk k/k + Fk(yYL) Fk

a [ I- [ I-kCkIT + ,ek T (4.18)"k/k I zkCk 1 "k/k-1 E;~ I

Fk - I-F Ck] ek (1K) -E, [O(N-lKo )rX (N-Ko)nI (N-l-Ko)r . (4.19)

Here the subindices of the null and identity matrices indicate their

respective size.

2. Uncertaincy in Covariances

We suppose now that the means are known, i.e. y myL' and therefore that

the estimates are unbiased. By the definition of the state-transition matrix
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I
it is easy to check (161 that a  satisfies the equation

/ a a k/k-1 I T  (4.20)

!+/k [Ak KkCklk/k-l[kKkCk + (2

The optimal gains are given by

Kk -arg mn I
rk nXr/k-IT +T + k-1 4.

(A k Zk/k-I Ck +"k Ck 1,k i +Ik (4.21)

-k+lk ' k 'k A k k k

I T Z k / k -i ck / k _ I  CC T T
k +k [Ck + -k/k- "k k k kk

I (4.22)_

ko/k-i 0 Z°

k r Ek eC Rnx r %k/k ak/k-1 Ck [Ck Zk/k-1 ck + k(423)

where n v

"k/q K E R n x r "k/q (.4

can be precomputed since it does not depend on the observations.

Since all the matrices involved are possibly time-varying, in the remain-

1 der of the discussion we will drop, for convenience, their explicit dependence

on time except when this could be ambiguous.

J In order to prove the minimax theorems we will make use of the following

sensitivity result.

Lema 4
LemSuppose C' is a convex set and (1,*,e, o)  A - (1- a) A L + c9 with

AL-(L,L,eL,ZoL) and 2 - (V,X,Y,Z) both belonging to C'. Let ;kL q be

('& L' "' -L) /
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the state estimate of the Kalman filter designed for AL when A is truly
A LA -T

present. With ek/q xk - xk/q k/q E e e we have that

for all AL,f E C' and time k, and for qmk,k-l

- (I -r 0 (4.25)a_*o a (k/q -r/q)

Proof

"k/k-1 and r k/k_ satisfy the equations (4.14) and (4.20) for the

optimal Kalman gains K and KL designed for A and AL respectively. Note

that in both cases the same set of covariances 0,) is present.

Therefore, we have

'k+l/k -rk+l/k - [A - KC] (k/k_ - rk/k-l ) [A -

* *T * * * - *T
$(K KL -(K -KL) * + K 9K KeK,-L- L.

S * AT* T
(K -L) C k/k- - A Zk/k-l CT(K* -KL

CT  * K* T*T
KC k/k-l KL + C Zk/k-1C K

[A-KLC] (Zk/k_ - rk/kl ) [A-KLCJT

(K* ) [C lk_ 1  + e] (K *)T (4.26)

where in order to get the last equality the expression for K (4.21) has

been taken into account. It is worth noting that (4.26) gives the varia-

tion of the error variance due to an arbitrary modification (up to here

the value of KL has not been used) of the optimal Kalman gain (cf. [171).

Because lim I[K -K] exists for every time k and A. E CV (see Appendix 1),

in the limit (4.26) reduces to a homogeneous equation, and since M k - -

"o"rkok- we have
0 k 0/k 0wh-1
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n - r/ (4.27)

a ci* 0CL. k/k-l k/k-l1

Using (4.12) for E and EL, again the gains designed for A and AL respectively,

and the expression (4.23) for E , a series of manipulations result in

k/k- rk/k -[I- (I-k/k-l - r k/kl) [I-EclCT

(E* -) [C Zk/k_ T + 1 (E* - )T (4.28)EL fCEL)k-

Now, taking r [. of both sides of (4.28), the first term of the right
t-OL

side is zero as a consequence of (4.27) and the second term vanishes as1 1 * *

well, because lira ( E -EL) exists as can be shown similarly to Appendix I.
a _)c- o

This ends the proof of the Lemma.

If when the second order statistics are uncertain, we use the weighted

Isquare error (4.5) as the penalty function, inasmuch as the history of the

least favorable statistics can be different for every k, it is possible

that the minimax filter is given by a recursion that does not solve the

f problem for previous times, therefore we are forced to build a different

filter for every k, running from k to k. The inapplicability of this

1solution leads to the consideration of the penalty function (cf. [131)
L(,y,A) , T

- E k/q Qk k/qU q'Zq ]  (4.29)
k-k1 0

that when the statistical model is known has the same minimizing filter as

1(4.5). Furthermore, note that the penalty function of (4.5) can be con-

sidered a particular case of (4.29).

We assume that C is an uncertainty class such that there exists a convex set C' D C

that fulfills (2.13) achieving the inf sup, i.e. with least favorables. Given that the

means are known and Xis the set of linear filters, the following minimax theorem holds.

1J
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Theorem 1

The Kalman filter for the least favorable collection of coariances

for (predictor/filter) state estimation is robust for the game (C,3C,L).

Proof

First consider the class JC of linear filters of the form (4.6-8) for

K,E SE eX r and with matrices A,B,C given by the original system (4.1-2).

Then the penalty function is

N-i
L(H,A) - Z tr{Qk Z (4.30)

kink
0

with k/q given by (4.13), (4.14), (4.18) for q - k,k-1. Now we check that

the sufficient conditions of Lemma 1 hold in this case: i) L(h,A) is

linear in Z, IV, 9, Z and thus concave in C'; ii) it follows from Lemma 40

that every element in C' forms a regular pair with its associated Kalman

filter; and iii) since the Kalman filter (optimum over ;0 for a given A,

belongs always to the class X we have condition ii) of Theorem 2.1 for any

set of covariances. (Note that if x k is a gaussian random vector and the
0

process and observation noises are jointly gaussian, we can drop the restric-

tion of linearity for the class JC in the Theorem.) Thus the assumptions of

Lemma i are satisfied and Theorem I follows.

Remark
*

The last pro)f allows us to notice the role of the class X in Th. 2.1

Thanks to the previous restriction to the set of filters with given A, B, C

matrices we were able to prre the concavity in the uncertainties of the

penalty function, while the theorem holds for the general class of filters.

-j
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(This restriction of the set of filters has been previously justified by

I the convenience of an unbiased estimate (131. However, this is not enough

3 to prove the optimality of the solution over all possible linear estimators.)

Theorem 1 has reduced the original minimax filter design problem to

the search for least favorable sets of covariances. In this point the

application of Lemma 3 has proven to be successful in dealing with impor-

tant uncertainty classes in other contexts [5 1. In the presenw case, let

I us define
N-l

W (R) IT 'D L(k,j) Rk PL(k,j) (4.31)
k-j

I where k eEnxn (if R > 0 then W(R) > 0), and L (-,-) is the state transi-

tion matrix of the fundamental matrix (A -KLC). Using this definition and

interchanging the order of summation, (4.13)and (4.18) result in

I N-1 N-2
- troQ Z a tr{Z Wk (Q) + Z M W+ (01 (4.32)

tZk-k ko k 0Ik tJ+

Z- tr{Qk Za I - tr{l W ([I- ELC IT Q (I - ELC 1)
k-k k/k ok°

N-2

+ kQkELkek} (4.33)

] Applying Le- 3 to these expressions, Theorems 2 and 3 follow straight-

forwardly.I
I
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Theorem 2

If C' can be put as the cartesian product of uncertainty classes

x x P x V x S, then (- LL,L,oL) is the least favorable collection of

covariances for predictor state estimation if and only if the following

are satisfied

N-2
- arg max tr{Z W (Q)1 (4.34)

L C:X j-k, J J+l

N- 2
* L -arg min tr{ * Z ej W +(Q) } (4.35)

L 4'P J-k 0

L - arg max tr{Z e K W W (Q) K (4.36)

zoL - arg max tr{Zo W (Q)} (4.37)z S 07
0

- Z L/4 - T + * -1 L T + 1 -- (4.38)
KLK 0 kk- S 4 Lk1 [k -k/k-1 Ci +Lk]

L ILz k+l/k k/k-l A + z-Lk
L T + *Lk ][Ck :L CT !:k- L[ k l CT + kT

- (A kZk/k-1 Ck L k/k-1 ck + "LkI lf k/k- C+ +

(4.39)
L 

(4.40)Iko0/ko0_ 1 "oL

Notice that while the optimal observer for fixed covariances is independent

of the error weighting matrix Q, this is not the case here, since the least

favorable covariances may depend on Q. Moreover, the least favorable covari-

ances (from k-k to N-I) depend on the final time N.0
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Theorem 3

Under the hypothesis of Theorem 2, ZL',L'eL',oL ) is the least

favorable collection of covariances for filter state estimation if and

only if (4.38-40) and the following are satisfied

I =N-2

- ang max tr( Z - P 1 (4.41)
i L - J- 0'k°  j+(

"4N-2

I'e " arg main tr{-f Z T N;2 (4.42)L P j-k° 0 --'j j-+1

9_ arg max tr( 1- 1ej 'i Q= E, + 1: ' j Pj+l Lj} (4.43)

e J-k 0  j k0

oL arg max tr(Zp{ k } (4.44)I ~~ oL oS o0
0 T

Pj - Ji ([I- ELCIT Q [-ELC) (4.45)

Z L T L T -1 (4.46)
Lk [k/k-1 k [kk/k- k "Lk'

1 3. Uncertainty in Means and Covariances

I Once we have solved the problem for uncertainty in the covariance

matrices, we drop the assumption that the means are known and we attack the

I completely general question. The penalty functions for predictor and filter

state estimation are derived from (4.5), (4.12), (4.17)

N-1i T(,)
L P-(hyA) Z (tr(Q+ K kT Ik Il(IK)(Y-YL))

(4.47)

IN-1I (~ TT
L f(h,y,A) I N (tr(Qk Zk/k} + (yYL)T Fk Qk F k(Y-YL)) (4.48)

1 k~ko

I
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It is not possible to apply Lemmas I and 3 to these penalty functions

because they are not concave in the uncertainties (in fact, they are convex).

However, we can put the uncertainty set as the cartesian product X x P x V x

S x M, and the part of the penalty function due to the error variance can

be decomposed in the same way as in Theorems 2 and 3 in order to apply

Lema 2 (note that no further decomposition of the penalty due to the means

is possible). Unfortunately, except for trivial mean uncertainty classes,

equation (2.20) has no solution in this case. The reason for this can be

seen intuitively considering that the performance of a filter built for a

given set of means can only be deteriorated when different means are truly

present, and hence no saddle-point solution to the filtering game exists.

Alternatively, we deal with the soft minimax solution to the

problem. According to this approach, useful to model frequent situations

in which there is not "total" uncertainty, operating points that are

closer to a given nominal are more likely to 9ccur than those in the

uncertainty class more distant from it. This f4rther knowledge can be

taken advantage of, by adding to the penalty function an additional term

accounting for the distance between the operating point and the nominal.

Applying this to the uncertainty in means

L'(h,yA) - L p(hy,A) - (y-yN) D (y-yN) (4.49)

where D is a positive semidefinite matrix, and yN is the vector of nominal

means.

Theorem 4

Suppose for all possible covariances we have
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I
(IK) T ,TQ 0 (tUK) D 0 (4.50)

I k=kk

I then the Kalman filter given by (4.34-40) and with nominal means is robust

for the game (M x C, JC, L') (predictor state estimation).Ip
Proof

3 Applying Lema 2, we see that in order for (2.20) to have a solution,

the Kalman gain must be the optimal for the least favorable set of covari-

ances (independent of the means) and thus (4.34-37) must hold. Besides we

Ineed a solution to
TN-1 TkkkiK TY(R L

YR w arg min (y*(yR) -yLT Lz (IK) * -

YL E M k-k0

j - (y*(yR)-YN) T D (y*(yR) - N)  (4.51)

y (yR) arg max T X (IK)T Q 4k(1K)k(y-Y
yEM k-k(I M 

$ (k

(y - yT (4.52)

But taking into account that,

, N-l
1 ( T k( 4 D (4.53)

Y (YN) =YN' and therefore YN is solution to (4.51). An analogous proof holds

for the next theorem.

c iTheorem 5

Suppose for all possible covariances we have
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N-i
FT Q F - D 4 0 (4.54)

k-k

then the Kalman filter given by (4.38-46) and with nominal means is robust

for the game (M xC,,Lf) (filter state estimation).

It is interesting to remark that the design of observers for systems

with unknown input Uk is just a particular case of the.unknown means

problem treated here. Basar and Mintz [201 have solved a tracking-evasion

problem through the design of a filter-estimator for a system with obser-

vation noise and initial state with known second order statistics and

unknown input. They use a penalty function that counterbalances the mean

square estimation error (in one instant) w-th a quadratic cost on the

choice of the input. In our notation we have: for k- ,... ,N-2, wk

unknown, w -0, vko, 1 k -0 , Z k-O; Qt- Q 0, m-0,

1 2 1 2
D - diag(D;:.Do,DD where D;, D; are matrices of appropriate dimensions

and arbitrarily large positive eigenvalues (this models the certainty

on m and vk). Then the sufficient condition of Theorem 5 in order for

the robust estimator to have w Lk 0, reduces to

[I-EN l CNlT [(I-l,ko+1) 1 T$(N-l,N-l)I
0

QNI[ (N_,ko+l)"-i(N-,N-)[I- 1 CN_ 1 - D 0 (4.55)

which is precisely the sufficient condition derived in (20] in order for

the minimax estimator to have Uk - 0.
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4.3 Robust Regulator Problem

1. Formulation

The optimal regulator for linear quadratic optimal control is the

I solution to

U arg min J(H,y,A) (4.56)

HEJC

3 with N- 1 T (

J(H,y,A) - E~xt F NIZNJ] + kZ k xQlkxk+UkQ2kUkIZk-] (4.57)

where xk is the state of the system (4.1-2) with zero mean process noise,

XC is the set of linear filters, with input Uk_1 and Zk-I and output Uk,

and F and Qlk positive semidefinite and Q2k positive definite. The optimal

J filter when the noise covariances are fixed is (16]:

Uk =- Gk xk/k-l (4.58)

Gk Q2 k 
+ Bk Sk+l B 1  Bk Sk+1lA (4.59)2kT T -l] -k

s k Sk+l Ak + Qlk - ASk+l Bk(Q2k 
+ Bk Sk+l k Sk+l

J (4.60)

J S N -F (4.61)

and x/k-l the optimal predictor estimate given by (4.6), (4.8), (4.21),

(4.22). This is the consequence of the separation principle of stochastic

1 control, that enunciates the optimality of the feedback of the state esti-

mate with the same gain as that in the known state case. Since the feedback

Igain G does not depend on the statistics of the noise it should be expected,
1 that when these are unknown, the optimal value of G is unchanged, and thus

1
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the control and state estimation problems can still be solved separately.

We will prove this statement rigorously and will show that in general the

state estimates are not given by a minimax observer.

We will use the following identity [181.

Lemma 5

If the process noise has zero mean

N-1
EbcS F x,, + Z k + U~ k 2k UkI-

k-k
0

T N-i
mo Sk mo+ tr{Sk Zo} + k tr(S k+l-k

o k-k klk
0

N-i T T
+-k E[(U k + Gk xk)T[Bk Sk+l Bk + Q2k (Uk + Gk xk)I (4.62)
k-k

0

with G and S given by (4.59-61).

2. Uncertainty in Covariances

Theorem 6

The regulator consisting of the feedback for complete state infor-

mation, of the state estimates produced by the Kalman filter for the least

favorable collection of covariances for linear quadratic optimal control

is robust for the game (C,X,J).

Proof

Similarly to the proof of Theorem 1, we first consider the class x*

of linear filters of the form (4.6), (4.58-61) for K E Rnxr and with

matrices A, B, C given by the original system. Let us define the positive
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semidefinite matrix

T BS B - T (463)
Ak S k+l k [Q2 k k+l k|  k Sk+l Ak "

then the penalty function can be expressed (by Lemma 3 and (4.58)and taking

into account that the means are known) as

T 1I. J(H,A) - m S m + tr(S_ Z 0 + Z tr(S k.-- }
k oo o kko k-

0

Again this is linear in- ), , 0 and thus concave in C'. Besides

i Lemma 4 implies that every element in U' forms a regular pair -- for

(C',. ,J) -- with its optimum regulator. The optimal linear regulator

(over 50 for any set of covariances belongs to the class X*, so we have

(2.7) for all AG C, and the theorem follows.

Note that, as the following theorem states, the least favorable set

of covariances for this problem may be different from the one for state

1estimation, hence our previous assertion that the Kalman filter for the

minimax regulator is not a minimax observer, in general. By the same kind

of manipulations that led to (4.32), the penalty function can be expressed

a s1H A - T S m + t r {
O, Sk 0 r(sk 0 SN N1

0 0
~N-2

+ tr{~Z (N)+ - Zsj+ l + M W MW)) (4.65)
o 3 ca) b p i i J+l

Le-a 3 can be applied to this expression resulting in

i.

I!
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Theorem 7

Under the same assumptions and definitions as in Theorem 2,

( ,M' eLo) is the least favorable collection of covariances for
L'*L' L'!oL)

linear quadratic optimal control if and only if (4.38-40) and the following

are satisfied.

N-2

L " arg max tr{-N F + Z 1(Sj+1 + W +(N))} (4.66)
N-I ink 0  i 11 l

N-2

T*N = arg min tr{ M *I' Vi W 1 (N)} (4.67)
e 'P ink0 Jl

N-2
L arg max tr{ Z 8  W KjW 1 (N) K 1  (4.68)e e N j-k

oL arg max tr{Z 0 (Sk  + (N))} (4.69)
ES 0 0

3. Uncertainty in Means and Covariances

When the means of the initial state and of the observation noise are

unknown, the penalty function is, using soft minimax,

N-i N-i
J(h,y,A) - tr{Sk 2o} + " trS k+I + tr(Nk a

o k-k k-k k/k-i
0 0

(VVTi~ vTIT

+ (V-VL) T(jK)T 2 k K T k (JK)(V-V ) + VT(Is)VL k-k k k kL
0

- V N)T D (V- N) (4.70)

where (JK) - diag{In$,-Kk ,-_2}; (IS) - diag{Sk 0 (N-l-k0)r}

V CO(Uo,Vk ,...,vN2) (analogously VL and VN) then we have straightforwardly
0

from Lemma 2, the following
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Theorem 8

SThe regulator consisting of the feedback for complete state information

of the state estimates produced by the Kalman filter given by (4.38-40) and

1 (4.66-69) and with means that solve

I T N-
VR " mx K)' ( JK)TZ$T NJ @'J.K(V V) (4.71)i ve, " 0 -o k-k°

* - -~ N-l -~ NI$(K)V

V eM (V -VR) k N O VRV vEM "k-k °  .... k

+ VT (IS)V - (V- VN) D (V- VN) (4.72)

3 is robust for the game (M xC,A,J).

4.4 Continuous-time case

Consider a system described by the stochastic differential equations

! [dx t M A(t) x t d t + B (t) u tdt + d t (4.73)

dyt M C(t) x tdt + dOt  (4.74)

1 with xt an nxl state vector, ut and mxl control vector, t and rxl output

i vector, and tv 0 t Wiener processes with incremental covariance

coy [d t , d9 - /,,( dt (4.75)

and with the initial state x(to) a gaussian random vector with mean x and

variance Z uncorrelated with and 8vaine0 t tn r

We will suppose here that the means are known and that the covariance

1 matrices belong to an uncertainty set (0(t),4(t),G(t),Zo) - A C C. It is
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well known that the optimal observer of the state, i.e. the system that

minimizes

It1  T

L(H,A)- E[e TQ(s)eslU<s,Y Ids (4.76)
to

where ett -x t and Q(t) is a positive definite weighting matrix in the

Kalman filter, is given by

dx t = A(t)x tdt + B(t)u tdt + K(t)[dy t - c(t)x d t  (4.77)

K(t) = [P(t)C T(t) + *(t) - (t) (4.78)

P(t) - [A(t) - *(t)o-l(t)C(t)]P(t) + P(t)[A(t) - 4(t) -l(t)C(t)IT

- P(t)C T(t)o-l(t)C(t)P(t) + *(t) - q(t)ol(t)*T(t) (4.79)

P(to ) 0 zo o xt  = xo (4.80)
0

Moreover, the optimal regulator for linear quadratic optimal control is the

system that minimizes

tI

J(H,A) - E[xTFxt y<tI + I [TQl(S)x + uT Q2(S)UIds (4.81)
to

is given by

u(t) = -G(t)x(t) (4.82)

G() -- Q21 (t)BT(t) S(t) (4.83)

T -
-S(t) - A (t)S(t) + S(t)A(t) + Q 1(t) - S(t)B(t)Q2 (t)B(t)S(t) (4.84)

S(tl) - F (4.85)
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and xt) given by (4.77-80).

3 Then, all the results in discrete-time have their respective parallels

in continuous time:

Lemma 6

Suppose C' is a convex set and 0 A - A (l- a)A + c with

A (L,,L,eL,zoL) and f- (V,X,Y,Z) both belonging to C'.

Let et be the error of the optimal observer for A when A is the operating

point and let Rt  Ele t e. Then

liml [P R 0 (4.86)a - 0 a [t-Rt] = 0486

I Proof

By similar manipulations we can get the counterpart of equation (4.26):

(P -k) = (A-KLC)(P-R) + (P-R)(A KLC)T + (K-KL)e(K-KL) T  (4.87)

Analogously to Appendix 1 we can see that (K -KL) = O(a), and when a tends to

0, all the coefficients of the Ricati equation (4.79) are perturbed line.rly.

Moreover, since the initial condition P(to) - R(to) = 0, the solution of

(4.87) is o(a).

1 Theorem 9

ji The Kalman filter for the least favorable collection of covariances for

continuous-time state estimation is robust for the game (C,7,L).

I Proof

jUsing Lemma 6 the proof is completely analogous to the one in Theorem 1,
noting thatI

I
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t1

L(H,A) fJ tr(QtP tdt (4.88)
to

For linear quadratic optimal control, the following Lemma [18] is used.

Lemma 7

t1

E[XI F X + L X Q X + UT ]dt]
t 1  t t 1 t t 2 t

TO t

= XT S(t )X + tr{S(to)-I} + tr{Sdt
0 0 000 

f

~tl

+ E[ (Ut + G XTT (Ut + G Xt)dt ]  (4.89)
to0

where G and S are given by (4.83-85).

Theorem 10

The regulator consisting of the feedback for complete state information,

of the state estimates produce' by the continuous-time Kalman filter for the

least favorable collection of covariances for linear quadratic optimal control

is robust for the game (C,C,J).

Proof

Again, the penalty function is

J(H X T S(to)X + tr{S(to0)!:o0 + tr{Z'S~dt

tt

00
+( tr{GT Q2 G P}dt (4.90)

to
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I

and Lemma 6 can be applied to yield the desired result by the same reasoning

as in the proof of Theorem 6.

Identically to (4.31) we define in the continuous-time case:

t

W,(R) 4b T * (t,X) Rt L (t,X) dt (4.91)

Then the next two theorems are proved similarly to Theorems 2 and 7.

3 Theorem i1

If the covariance uncertainty classes are independent then (-'L E L,'ZoL)

I is the least favorable collection of covariances for continuous-time state

3 estimation if and only if the following are satisfied

tO

L =L arg max tr f -(t)Wt(Q)dt (4.92)
- X Jti

I ( to

* fi arg min tr f ik:) v Q)dt (4.93)
I 'IG P1

to

9Larg max tr G~) tWt()~d (4.94)I LE Nt

oL arg max trE 0 Wt(Q)} (4.95)

S-KL [PLC + L] G 1  (4 .96)

p - [A-*L81C]P + PL[A-*LOL C ] T  PLCT - 4LOL LT  (4.97)
L JL L[iL L L - 9L C PL + L _ L L

P L(t) ZoL (4.98)

1
I
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Theorem 12

If the covariance uncertainty classes are independent then (- L' L' EoL

is the least favorable collection of covariances for linear quadratic optimal

control if and only if (4.96-98) and the following are satisfied.

max tr (f:1 (N)]dt (4.99)

-E X to0

tI1

tIarg tr {f t) dt } 410

t1 T
E)L=arg ma Ex tr ft )OK~tWt(N)KLtdt (4.101)

oL = arg max tr{ 0(S(t ) + W (N)) (4.102)
ES to

N - GT Q2 G (4.103)

Steady state case

Consider the case in which the system and covariance matrices are time

invariant. Under the proper assumptions, S(t) and PL(t) given by the Ricatti

equations (4.84) and (4.97) reach a steady-state solution. If we consider the
1

case tI = T o, the penalty function should be converted to lim - J(T), in

which case, (4.99-101) result in

= arg max tr{--(S + W(N))} (4.104)
-EX TJ

41 L arg min trf* K W(N)) (4.105)

eL = arg max tr{KL @L K W(N)} (4.106)E N
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!
but, from (4.91) we can see that W(N) is the solution to the algebraic

3 Riccati equation

3 (A - KLC)TW(N) + W(N)(A - KC) + N - 0 (4.107)

I Therefore, (4.104) and (4.106) are precisely the equations given in [il] for

the uncorrelated steady-state case. An analogous discussion with Theorem 11

3 results in the conditions of [10] for the state estimation problem.

I 4.5 Application of the Conditions for Least Favorability

The recursive character of the sets of equations for least favorability

I given in Sections 2 and 3 makes them attractive for a numerical solution

based on an iterative search of least favorable covariances and filter

matrices. However, for some uncertainty classes further analytical results

are possible, as we show in this section. In order to illustrate the use

of the conditions for least favorability we will consider several cases:

i) If the uncertainty classes do not impose a time dependence upon their

Ielements (i.e., they constrain only the instantaneous values of the matrices),

the least favorability conditions result in the extremization of the "weighted

trace", tr(Uk TT), of the unknown matrix U for every sample, where T is given

( by every particular condition.

a) When the autocovariance classes x, N or S have an element that

I is maximal for every time k, i.e. UMk- Uk is positive semidefinite for

every element Uk in the class, for all k, this is the least favorable

(cf. (12 ,141). This follows because in the corresponding conditions every

Iunknown autocovariance matrix appears multiplying, under the trace, a
positive semidefinite matrix.

I
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b) Suppose all is known of a particular covariance matrix Uk , is

that its elements lie between some independent bounds

UCiJ) 4 U (i,j) 4 'Uk(i,j) (4.108)

preserving the definiteness of the matrix if it belongs to an autocovariance

class. Obviously this class is convex and the least-favorability conditions

can be used. We get easily that the least favorable matrix satisfies

[ k(ij) if Tk(ij) < 0

U Lk(i'j) = (ij) if T (i,j) > 0

In particular, if Tk is positive definite the diagonal elements of ULk

have their largest possible value, a result that was achieved employing

different techniques in [13] for observer design with uncertainties only in

the autocovariances of the process and observation noises.

ii) Consider the following model ir the deviation of the time varying

matrices from a given nominal:

Y= Uk k  , Uk E axb, U -U(), A} (4.110)

with the possible preservation of definiteness, as before. The norm of

(4.110) is the root mean square of the Euclidean norm, i.e.

M a b
l Z I I j (Uk(ij)) (4.111)

kaki ito cei

and it is easy to check that coincides with the norm associated writ~h the
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inner product

<A,B> -tr{ Z B M (4.112)

k-k

0
where A k, Bk E Iax

Note that this definition of the norm for matrices of arbitrary frame

allows the accomodation of uncertainties in the crosscovariance *. Convexity

of the set y follows directly from the Schwarz inequality, thus it isI
possible to apply the conditions for least favorability, that can be expressed

in general as

UL - arg ext <U,T> (4.113)u 6 Y

Iwhere ext is max/min for auto/cross-covariances respectively. The solution

of (4.113) is (Proposition 1, Chapter 3)

UL - U( ° ) + eT (4.114)

where e is a nonnegative scalar such that UL is an extremal element of y,

and should be computed recursively. For example, suppose that the cross- 4
( covariance of the process and observation noise is uncertain around an

uncorrelated nominal model. Then for the cases exposed in Sections 2 and

13, the least favorable conditions are (4.35), (4.42), (4.67), with the

common form
~N-2

itiarg min tr{ Z- 4, TW (4.115)
S6 P J-k°

jif the uncertainty class (4.110) is used, the least favorable is

!
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*I -cW Ki (4.116)

Substituting this into (4.38) the Kalman gain for the robust filter is

KL - A zL CT [C zL CT + e + e WII-' (4.117)

KL- (C ZL CT +8) I + C WI A ZL CT (4.118)

when the dimension of the system (n) and observation (r) is one respectively.

In order to treat uncertainties in the covariance of the initial condi-

tion, or when the other unknown matrices are restricted to be constant, we

can use (4.110) as the deviation class with the additional assumption that

U is time invariant and the norm (4.111) is not summed over time. Then we

define the inner product as

T
<A,B> - tr{A B (4.119)

and the least favorable has the form

UL +U(°) C Z Tk  (4.120)
k-k

0

if dealing with Z, * or e, and (4.114) for M
~0 °

4.6 Conclusions

The application of the general formulation of minimax robust filtering

has allowed us to present minimax theorems for predictor and filter state

estimation and for quadratic control, under general classes of uncertain-

ties in the second order statistics of the linear stochastic system. These

results represent a generalization of earlier works [i,[21 devoted to the

steady-state case for invariant continuous-time systems with uncorrelated
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3 noises. The minimax theorems state that the minimax filter is the optimal

for the least favorable collection of noise covariances; this saddle point

property implies a very attractive feature, namely, that when the actual

covariances differ from the least favorable ones, the performance of the

filter is upgraded. Sets of necessary and sufficient conditions are given

5 for the least favorability of the four types of covariance matrices involved.

These conditions lend themselves to a recursive solution, and are applied

successfully .to deviation classes of practical interest. It is worth to

underscore that under the same type of uncertainty the worst case covari-

ances do not necessarily coincide for the three types of filters treated

I here, in particular the observer used for the minimax regulator is not in

1 general, a minimax predictor state estimator.

Given a particular expected deviation behavior, the tradeoff between

the decrease of performance (with respect to the nominal filter) in the

nominal model and the improvement of the worst case, should be assessed

for the practical application of the minimax filters presented. The soft

minimax approach has been used to deal with unknown means, and the con-

nection with earlier works for estimators with unknown forcing functions,

has been shown. If the covariance uncertainty classes can be modeled,

as well, including nominals that are more likely to occur, their soft

I

I
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Appendix 1

Proof of the existence of the linear term of the Taylor series of K

in powers of a,

Denoting S lim (Ir(m) - 9(0)), differentiating (3.17) and (3.18)

8K* ([A SMk CT + X]- [A ZL CT + ' ] - (C SE CT + Y])R7-  (A.1.1)

8 Izk+ 1 -A 81 k AT  ( A SE k C T + XI R-' [A M L C T + *LI T
T

[A!"Lct+4L]R-l([C S~k cT +Y] R( A L +L I

-[A L C' +41L]R- [cS8-k AT + X]+ v (A.l.2)

with SM " Z and R - C z CT + 9L , but since 0 is positive definite andk L L' L
0

EL is positive semidefinite, R is nonsingular. Thus SK exists for every

time k, and all . C'.

I
! .

U
3
I
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3 Appendix 2

For the case of uncorrelated and time invariant noises with a priori

known covariance of initial state and first order statistics, a proof of

the minimax theorem for Kalman gain design in continuous time, has

appeared previously in the literature 1191. The authors show the con-

3 cavity in the uncertainties and the convexity in the gain matrix, of the

payoff function, and therefore are able to apply a standard game theoretic

theorem. Unfortunately the payoff function is not convex in the Kalman

3 gain as can be illustrated by a simple one-dimensional continuous time

example:I x - x

where the initial state at t -0 is known, and the variance of the white

observation noise w is assumed to be 9. The mean-square error of an

observer with constant gain K, at time t -1 is easily obtainedI!
E E [e 2 )] (K /(K+1))(1-exp(-K- 1))

f a function that is not convex in K. (Obviously the optimal K is zero,

since no observations are needed in order to estimate the state without

I error.)

The mistake in the proof of the convexity, is couitted by neglecting

the dependence of the error covariance on the gain K when taking the

3 derivative of a Riccati equation with respect to K.

I
!
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5. OTHER APPLICATIONS

5.1 Wiener Filtering

Wiener filtering is one of the most developed applications of minimax

robust filtering to date. The precursor work of Kassam and Lim (26 1 was

followed by the formalization of Poor [27] and the study of the discrete-

time causal Wiener filtering problem by Vastola and Poor [281. The purpose

of this section is to illustrate the application of the results of Chapter

2 to the noncausal uncorrelated case (the general situation can be handled

in a similar fashion). While the application of the robust filtering theorem

leads to a slight generalization (the signal and noise uncertainties are not

required to be independent) of Theorem 1 of [271, the uncertainties separa-

tion theorem results in a set of conditions for least-favorability similar

to those given in Chapters 3 and 4. (Note incidentally that in the area of

robust Wiener filtering an atypical definition of least-favorability has been

used. This confusion has its origin in an obscure discussion in (311.) Let

us consider the penalty function

E(H;s,n) = J [s(w) IK() - H(() 2+nMIH()i2.1)

where H C -C, (s,n) e P C F x F with X and F representing some adequate spaces

of filter transfer functions and power spectral densities, respectively.

Theorem 5.1

Suppose P is convex, then if (sL,nL) is a least favorable for (P,MC,E)

iaim rl L tHL( KL (w) S;L(w ) + n L(w)(.2

is a minimax robust filter for the game (P,IC,E).
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I
Proof

1 Note that the penalty function (5.1) is linear (and therefore concave)

3 in the uncertainties. (Moreover, it is convex in the set of filters, thus

standard minimax theorems could be used in this proof.) So it is sufficient

I to prove that (HL,(sL,nL)) is a regular pair in order to prove the result

via the robust filtering theorem.

Let (a,v) = (1- a)(sL,nL) + a(s,n), where (s,n) E P. Then

I* IE (u,v) - E(HL;o,v) =

1 U_ JK(w)j 2  _HL(w) 1 2v (w).I.L )() 12 dw

I7 K(w) +(w) - o ( K w) 2 v(w) 2] dw

-v'LsL 2w L1 L L T

- I= s( )nL( O) 2 ()L()2 (W) n L W) - V (W) SL ( IK('')I2  d (5.3)l [n L (w) + s L () 2 ( () + V ))

V IHence, for every (s,n) E P

lm _ [E*(o,v) - E(HL;o,v)] - 0
. 0

1 Theorem 5.2

-J Suppose the uncertainties in signal and noise and independent, i.e.

P SxN.

((sL,nL),HL) is a saddle point of (SxN,,Y,E) if and only if

ii7
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1. HL (W) - K(W) L (5.2)
s L (w) + nL (W)

2. sL = argmax f s(c)lK(w) - ,L()12 dw (5.4)

3. nL " argmax n(w) IHL() 2 d. (5.5)
n E N -

Proof

The payoff function can be written as

-E(H;s,n) = f1 (H,s) + f2 (H,n) ,

f1 (H,s) = -_ s(w )K(w) - H(w)j2 d.

f 2 (H,n) = -_ n(w) lH(w) 12 d.a

and therefore the uncertainties separation theorem (Thm. 2.2) can be used.

Note that (5.5) is a special case of (3.10) and therefore the previously

derived results for matched filtering with noise uncertainty are useful here.

Apropos of signal uncertainty the following result can be proved similarly

to Prop. 3.1.

Proposition

The least favorable signal power spectral density in the class

S = {s(w) G F: I [so()-s(wo)12 dw <A2} (5.6)

is given by
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SL( = s2() + K (,. - H(w) (5.7)
SL 0 K~ 1 .~

3 where

IA/[JK(w) - HL(w) 4 dw] (5.8)

At this point, the reader should not be confident on a theory that leads

I to a result such as the proposition above. Suppose that the power spectral

density of the noise is fixed and is bounded away from zero. Let n be a

constant such that

SwER s 0(w ) + 6 1KQ() - HL(4)2 <<1

Then, straightforward manipulations show that VsL E S. How is it possible

that an attenuated version of sL is more favorable than sL itself? Indeed,

the Wiener filter for sL gives larger mean square error than the Wiener

filter for 7sL* The clue of the question is that we are not using the

penalty function that we should; in practice it is more meaningful, in

f general, to minimize the MSE relative to the signal power than the MSE

itself. Of course in the original Wiener filtering problem (with fixed

I input PSD's) both criteria coincide; however, in robust Wiener filtering

i a different penalty function should be used, e.g. the MSE relative to the

input signal power,

I[s )  
2

K ) - H ( w) 12 + n w) I H~w ) j2 dw

L(H;s,n) = d (5.9)

j s ( it) b

I
Note that when the signal uncertainty class is such that all its members

II,

I
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have the same power (like those in [261 and [27]), this is equivalent to

(5.1). However, none of the results developed in Chapter 2 can be applied

to this function, on one hand it is not concave in the signal, and on the

other it cannot be put in the form required by the uncertainties separa-

tion theorem. Therefore, robust Wiener filtering in this more general

setting remains an interesting open problem.

5.2 Quadratic Receivers

The optimum quadratic receiver for the detection of a stochastic

signal imbedded in additive noise, maximizes the deflection of the quadratic

test statistic (s+n, H(s+n)); if the noise is gaussian, the deflection can

be expressed as [231

2tr {H K }5
D(H;Ks,K ) = - s (5.10)

sn tr [HK nHK}nn n

where K and K are the signal and noise autocorrelation operators. Thes n

optimal filter is

H (K,K) =K -  K K-1 (5.11)sn n s n

achieving a maximum deflection

D (K,K) tr {K K-1 K K- 1  (5.12)
s n s n s n

Several generalized signal-to-noise ratios have been used besides

the deflection [23] . In [24] it was given a generalization of (5.10) --

involving the variance of the test under the signal present hypothesis --

that allows an analytic solution for the optimal filter, namely
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I

tr2{HK I

3 G(H;K s,K) s (5.13)

tria 0KH + 2aoLK HK nHK +1K HK

s *,(KsKn (ao Kn + al1s ) -I Ks(a0Kn + aiKs)I
In order to apply the robust filtering theorem to these instances, we need

to check the convexity of the payoff functions in the possible uncertainties.

It is easy to see (by counterexample) that neither (5.10) nor (5.13) are

convex in the noise operator for arbitrary Ks. And while (5.13) is not

convex in Ks for arbitrary a.9 al. Kn, (it can be shown taking derivatives

in the one-dimensional case), (5.10) is convex in K5
s ss

tr 2(H [(l- a)K sl +aKs2) (l-a)tr 2(HK sl ) +atr 2(HK s2)

I
where the inequality follows from the linearity of the trace and the con-

2
vexity of f(x) = x . Therefore the robust filtering theorem can only be

applied to the maximum-deflection quadratic receiver for fixed noise

autocorrelation.

I Theorem 5.3

I Suppose the signal autocorrelation uncertainty set S is convex, and

is the least favorable signal autocorrelation, then H = K-I K K7i
L K n~K

is a robust filter for (3C,S,D).

3 Proof

All we need to prove is that (HLKL) is a regular pair. Let K =
(1 (- )K L + aK, K E S



78

D (K s,K) - D(H;Ks,Kn =

tr{Knl K n K } tr(H K} - tr{ K}
nl sn S Ls

trHL KL}

1 [trL KL [(1- a)2 tr{K 1 KL K 1 KL)

+ 2a(1- a) tr{K 1  K1 KI + a2 tr{kl K k-1 KI]

n nn n

- ((1-a) tr{HL K + a tr{HL K})2]

2
a 2 -1 -1 2

tr{HL [tr(K KK n  K} tr{HL KL} - tr {HL K}1 (5.14)

therefore (HLKL) is indeed a regular pair for every KL E S.

When there are uncertainties in the noise autocorrelation the problem

can still be solved via the following direct application of the uncertainties

separation theorem.

Theorem 5.4

Suppose the uncertainties in the signal and noise autocorrelation

operators are independent. (HL,(KsL)KnL)) is a saddle point of (,SxN,D)

if and only if the following conditions hold:

i. = K- 1 K- 1I 5.5HL nL KsL nL (5.15)

2. KsL min tr{HL Ks } , (5.16)
K E S

3. KnL max tr{H L Kn HL Kn} (5.17)
KEN

n
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Note that condition 2 has the same form that the least favorability condi-

tions did in Chapter 4. In particular, the results in Section 4.5 hold

for the signal uncertainty here with minor modifications. Note also that

3 the uncertainties separation theorem cannot be applied to the generalized

criterion (5.13), providing another example in which neither of the theorems

I in Chapter 2 can be used.

5.3 Output-Energy Filter

When the received signal is random, sometimes a linear receiver that

Imaximizes the signal to noise ratio is used [251. In this case the output

f jsignal-to-noise ratio is given by:

Energy of output due to signal
R(h;Ks'K) Energy of output due to noise

(h, Ksh)
(5.18)

(h, K nh)

where as before Ks and Kn are the signal and noise autocorrelation operators.

Further justification of this criterion of optimality is possible considering

the SNR of (3.1) as a random variable, in which case its expected value coin-

cides with (5.18). Moreover, consider the special type of quadratic receiver

consisting of a linear filter followed by a square law device. If the signal

and noise are jointly gaussian processes, the variance of the output of the

receiver is proportional to the square of the variance of the output of the

filter, and therefore the deflection of the output of the receiver is propor-

tional to the square of the energy ratio (5.18).

The optimal output-energy filter is

h (sKn) eigenvector of Knl K with maximum eigenvalue (5.19)
s n n s

This can be proved analogously to Theorem X.13 of (291'I!
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Claim

R(h;Ks,K ) is
1. Convex in Ks for arbitrary h and K;

2. Convex in Kn for arbitrary h and Ks;

3. Not convex in (Ks,K n) for arbitrary h.

Proof

The first assertion is evident since R(hKs Kn) is linear in

To prove the second we use the method of the proof of Lemma 6 of [30]. Let

K -- (h, Klh) Thenn a)K1 +aK 2 and (h, Kh)

1 T1 1+ 1
1, h = (hKh) + (l-) (h, K h)

n n Knh

1 '2

a (h,1 K h) + (1-a) (h, K h) (5.20)

where the inequality follows from 8 < a (1,l,K 2 are non-negative operators

by assumption). The third assertion is easily verified b) a one-dimensional

counterexample. (Let (Ks,Kn ) - (4,2) + (li).)

Therefore the robust filtering theorem, if applicable, will treat

uncertainties either in the signal or noise operator but not in both.

However, a general result of the kind that we have presented for all the

previous filtering situations is not possible here, because the existence

of regular pairs for given operators KsL and KnL will depend on every

particular uncertainty class. As an example consider the simple discrete-

time case in which K - I and we have some class S of diagonal matrices.
n
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Then any matrix with distinct diagonal elements forms a regular pair with

its maximum-eigenvalue eigenvector; however, any matrix whose maximum-

eigenvalue eigenspace has dimension greater than unity does not form a

regular pair with any vector. In order to see this let Ks W diag{sl,...,sn},

3 - diagfl,Z...,n}, K- diag{kl,...,kn}, Ks - (l-ca)K1 + aK. Then (hL,K)

is a regular pair if and only if for every K E S

hT K hLh12 hTKsh Jh]]2 . o(a) (5.21)

where h is a maximum eigenvalue eigenvector of K.

I If # Z for all pairs there exists a positive 0 such that 0 4 a <

I implies thath h L for all K e S, hence (5.21) is true. Nevertheless, if

max(l,..., n ) is not unique (say max(Zl, ...,e = 1 Z2) there is no hL

I for which (5.21) can hold for every K 6 S. Of course (let K = ), in order

for (5.21) to be true it is necessary that hL is an eigenvector of KL with

maximum eigenvalue, i.e. a(l,0,...,0) and b(O,l,O,...,O), but if kI < k 2 and

Sh L = a(l,0,...,O) (analogously if k 2 < kI1 and h L  b(0,l,0,...,0))

hT Kh U hLI2 _ h TK K h lhIh 2 2= O(a) (5.22)

s L L sL 2 1

Directly from the uncertainties separation theorem we have

I Theorem 5.5

Suppose the uncertainties in the signal and noise autocorrelation

I operators are independent. Then (hL,(KsL,KnL)) is a saddle point of

I (X,SxN,R) if and only if

1. h is an eigenvector of K K with maximum eigenvalue,

I Is

U_
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2. KSL = min (hL, KshL) , (5.23)
K 6S

3. KnL K max (hL, Kh L (5.24)
K EN l
n

Note that (5.24) is the same as condition 3 of Theorem 3.2, and that if there

are minimal and maximal elements in S and N respectively, they are the solu-

tion of (5.23) and (5.24).

5.4 Hypothesis Testing and Estimation of Location

Our main goal here is to illustrate the application of the results

previously derived for minimax robust filtering, to other problems; specif-

ically in this last section we deal with the cases of robust hypothesis

testing [311 and robust estimation of a location parameter [301 , regarded

as the classical starting points of minimax robust procedures in statistics

and signal processing.

In the first problem, Huber 1311 presents the robust solution for a

particular uncertainty set of probability measures, namely a mixture class;

however, to the author's knowledge, n.o result for general uncertainty

classes is available yet. The application of the robust filtering theorem,

although it imposes some restrictions on the possible uncertainty classes,

in a step forward in that direction. On the other hand, in the robust

estimation problem, Huber does provide a general theorem (T.2 of [301) for

convex uncertainty classes; here we will rederive that result via the

robust filtering theorem. (It is worth noting that the game-theoretic

results of robust filtering (e.g. [31,[27]) were in good part inspired by

Huber's proof of (T.2 [301).)
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Suppose the problem is to decide with minimum probability of error

(any other Bayes test can be treated similarly) between two probability

measures upon observation of a random vector x. Hence the penalty function

I is

P " 0 d 1 - )dP (5.25)

. where the test O(x) 6 A is the conditional probability of deciding P1 given

5 that x is observed. The test that minimizes (5.25) is the likelihood ratio

test:

dpI  no

dP nO

1 M = 0 1 (5.26)

dP1  no| o 1<

i with arbitrary K.

j Now we assume that the pair of measures (POPl) is only known to

belong to a certain set Q. With respect to the game (Q,,,P ) we state

and prove the following.

I Theorem 5.6

Suppose that

1 1. The uncertainty set of probability measures Q is convex; and

i 2. for every pair (M0 ,mI ) E Q,

f M r di' IL d U 0i ~idcM
PL < " , dTPO - n < do 0 (5.27)

I
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where I denotes the indicator function. Then, if (PoL'PL) is least

favorable for (Q,I',P e) it has an optimal test which is minimax robust.

Proof

Since (5.25) is linear in P0 and P it follows that it is concave in

(P0,1P). Note that it is also concave in the priors, but it is not concave

on (n0,P0,H,P). (Since it is also convex in 4, the application of concave-

convex minimax theorems could be investigated.) Therefore all we have to

show is that for some test 0L' (PL'PIL)'0L ) is a regular pair. To this

end consider (P0,PI) (1i-M)(POL,PIL) + c(M0,MI) for an arbitrary (M0,MI)

E Q, then

Pe(P 0P I) e '%'lI (0- -L) (nodP 0 - H1 dP1 ) (5.28)

with 0 an optimal test for (P0 ,P 1 ).

The region of integration of (5.28) will be divided into 9 regionst

AdIL no  dP
dPlL H1  dP0

dPIL Ro  dP1

A :dP U 1 dPI
d -OL 1 d00

x:dPL <0 dPl

dP n dP
OL 1

A :dP 1L < o

OL 1I
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dP U no  dPI

I OL 1

Ad l n o d l
7 :dl' 1n1 dl' 0

S dPL 11 dPl
dP OL n1 dP0

: dPL no dP I

IP:( 0 ,P1 ) - P(L,PO,l'l) -.

• Now observe that we can write

Al dl L dPL dl
+0 0 1I ) +" (- K 1 dP 1).

[fA~ 1 O2 L A3 L OL4 0A7 f 8f

II dl' d l' f" dP-- ;l(- o-- 1L + -- o " -1 r °l ° d. P

i --- L) + L 1 ndI l~ (5.30)11 d OL OL 0

Therefore, taking into account the definition of the sets Ai,

A + f( 1 ) + K + (K K L

1 A 2  A 4  A, A 8 9

dPL RiU-L I (nodm - n ) ) (5.31)

nI
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and

dP [l
fJ(1 K fL K - , 14,1 iL 1nd nd
A2 8 dPOL n0

[f((l -K L) -K JL I(n0dM 0 - n M1,(5.32)
A2 A8

which is always zero with an appropriate choice of KL, namely, cL - 0 or I

if the first or second integral,respectively,of (5.27) is nonzero. If

both integrals are zero the value of KL is irrelevant. Note that we have

used the fact -- see eq. (5.30) -- that

d 0 iL dP o  dPIL

V0 n1 - OL dP0 1 1 dOL

Since the RN derivatives are right continuous at a - 0, AIA A A
1'4' 7' 9

reduce to null sets as a + 0; therefore (5.31) and (5.32) result in

lim . [p*(p,p) _ (0 P 0 (5.33)
a+0

But for every a,

Pe(POP) PeLO,) (0 (5.34)

therefore the regularity of UPoLPIL),0L) is demonstrated. It is interesting

to underline that although the probability of deciding one of the hypotheses

when the likelihood ratio is equal to the threshold is irrelevant for fixed

probability measures, there are instances in which this is no longer the case

for the robust test, as we have just seen.
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In Huber's famous formulation of the problem of robust estimation of

location [30], the statistician selects an influence curve 0 E * in order

to maximize the payoff

(fif'dt)2

K(,f) .35)
fO3fdt

l where f is the marg.nal probability density of the (independent) errors in

the location measurements. The maximum value of (5.35) is achieved with

4 - -f'/f and is given by (via the Schwarz inequality)

* ( (f,)2 dt (5.36)

If the density function f lies in a convex set F, our purpose is to

find the robust estimator for the game (4,F,K). Theorem 2 of [30] states that

the robust estimator is the optimal L for the least favorable density f

A proof of that theorem can be carried out by showing that (OL'fL) is a

regular pair (Lemma 6 of [30] shows that K is convex in the uncertainties).

Let f -a(l-)fL + ag with g E F; then

3 ) - K( f 0 Jf-)' dt - (foLfdt)
2

a L f1 f '2fdt

i fK(s) L W

af; 2 fdt ff 
fd

L (5.37)

I
If m(t,s) d (f (s)g,(t) + g(s)f'(t))L(s), the term in brackets is

j c[m(t,s) - m(s,t)] + o(a). Hence, when a . 0, (5.37) results in

I
I
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lrn -1 [K*(f) -K(Ot~) 01

f 2f' dt fOL (S) 0(t)[m (t's) -m(s,t)dtds 0 (.8

This demonstrates that (0 f)is a regular pair, and thus the problem

solved by Huber fits the framework developed in Chapter 2.
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6. SUMMARY

A recapitulation of the main contributions of this work is given in

I this chapter.

First, the robust filtering theorem presented in Chapter 2 gives suf-

U ficient conditions on the performance function and on the sets of filters

I and operating points in order for the minimax robust filter to be the opti-

mal filter for the least favorable operating point. In this theorem, the

I central issue turns out to be the introduction of the concept of regular

pairs of filter and operating point. By means of this result, a systematic

procedure is developed for solving problems in minimax robust filtering.

So, in the light of this theorem, several previously treated problems have

been revised and generalized, and other new problems have been proposed and

I solved. A technical refinement provided by the robust filtering theorem

has been the introduction of an equivalent game by means of which typical

restrictions of the uncertainty classes (pertaining to convexity and

existence of least favorable elements) are relaxed in certain cases, and

that allows the proof of extended results (class theorems) by considering

restricted classes of filters. The next general result that we presented,

i.e., the uncertainties separation theorem, constitutes a useful tool when

dealing with independent (not necessarily convex) uncertainty classes.

jWith some restrictions on the performance function, this theorem results
in sets of equations that can be solved for the robust filter, numerically

Ior analytically. Next, the concept of soft minimax has been introduced;

it offers the possibility of incorporating in the model some possible

further knowledge about the uncertain parameters by combining hard and

soft constraints.

S.
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Following the presentation of these general results we have discussed

their application to several specific filtering situations. First we have

given a complete treatment of the robust matched filtering problem following

the lines of the general work by Poor [3]; it is shown that the invertibility

of the noise covariance operator is not necessary (but it is sufficient) in

order for the regularity conditions to be satisfied, and a simple set of

necessary and sufficient conditions for a pair of signal and noise to be

least favorable is derived straightforwardly from the uncertainties separa-

tion theorem. Specific deviation classes are studied in the framework of

finite-length discrete-time processing (although the majority of the results

presented can be extended to the more general Hilbert space setting). Among

other conclusions it is demonstrated that, when the deviations of the signal

and of the noise covariance can be modeled by spheres centered on given

nominals, the robust filter is the one matched to the nominal signal and

to the nominal noise with an additional component of white nuise (whose

level is proportional to the size of the uncertainties); hence, in the fre-

quent event in which the nominal noise is white (or in which the nominal

signal is designed to be an eigenvector of the nominal noise covariance)

the nominal matched filter is minimax robust. Concerning the optimal

design of nominal signals for matched filtering in the presence of uncer-

tainties, two extremal cases are examined, namely, the Z2 uncertainty

model, that results in a nonlinear optimization problem, and a particular

case of the t. model, whose solution is the minimum-eigenvalue eigenvector

of the noise covariance; i.e., the optimal signal without uncertainties.

The minimax state estimation and control problem is addressed next.

General uncertainty classes of means and covariances of the process and
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observation white noises are allowed, and the linear time-varying transient

case is analyzed. Once again, the general results of Chapter 2 are applied

to this case, leading to the desired necessary and sufficient conditions

for least favorability, and to the demonstration of the minimax robustness

of the optimal system for the least favorable statistics. In each of the

problems that we consider, distinct conditions for least favorability are

i found; in particular, in relation to the separation theorem of stochastic

control, it is shown that while the controller can be derived separately,

its state estimates are not provided by the same Kalman filter as for

Jminimax estimation. In order to deal with uncertain means, we employ the

soft minimax approach introduced earlier; sufficient conditions for the

nominal system to be (soft) minimax robust are provided. An interesting

aspect is the fact that certain previous works in pursuit-evasion games

with soft energy constraints are special cases of the problem solved here,

and as such, arrive at coincidental solutions. Several examples of classes

for uncertain noise auto and crosscovariances are studied in detail. Apart

from their intrinsic interest they serve to illustrate the parallelism that

we have encountered in dealing with analogous uncertainty classes in different

filtering situations. This can be found, for instance, in the solution to

the normed deviation model and in the transfer of uncertainties from one

subclass to another already observed in the matched filtering problem.

IOther filtering situations, such as the quadratic receiver and the
output energy filter, in which the minimax robust approach has not been

applied before are also investigated. In these cases, we point out several

open problems for which the general results are not, as of now, applicable.

For instance, no generalized performance function involving the varianceIl
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1
of the output under the signal-present hypothesis leads to a solution of

the robust quadratic receiver problem. Also, finding conditions for

regularity in the output-energy filtering problem -- a generalization of

the matched filter -- appears as a difficult and interesting question.

The well-known problems of robust location estimation and of robust non-

causal Wiener filtering fit the general framework of Chapter 2 and alterna-

tive proofs of their respective minimax robust theorems are provided. In

the case of Wiener filtering, tractable and more meaningful approaches to

deal with signal uncertainty classes without equal-power constraints should

be investigated. Another interesting point is the study of the regularity

condition when no explicit expressions for the optimal performance achiev-

able at every operating point are available (e.g. causal filtering).

Finally, another topic that deserves further attention is the minimax

hypothesis testing problem for nonspecific uncertainty classes; although

the regularity condition (5.27) required by our results does not seem to

impose important restrictions in practice, its further relaxation appears

to be interesting.
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